Indecomposable ideals of finitary incidence algebras

被引:3
作者
Dugas, Manfred [1 ]
Herden, Daniel [1 ]
Rebrovich, Jack [1 ]
机构
[1] Baylor Univ, Dept Math, One Bear Pl 97328, Waco, TX 76798 USA
关键词
Ideals; Incidence algebras; AUTOMORPHISMS;
D O I
10.1016/j.jpaa.2020.106336
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
R.D. Sorkin showed in [8] how to recover a finite poset (P, <=) by algebraic means from its incidence algebra 1(P). We generalize this result to finitary incidence algebras FI(P) and arbitrary posets (P, <=). (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 11 条
  • [1] [Anonymous], 1997, MONOGR TXB PURE APPL
  • [2] [Anonymous], [No title captured]
  • [3] Anti-automorphisms and involutions on (finitary) incidence algebras
    Brusamarello, Rosali
    Fornaroli, Erica Z.
    Santulo, Ednei A., Jr.
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2012, 60 (02) : 181 - 188
  • [4] Local automorphisms of finitary incidence algebras
    Courtemanche, Jordan
    Dugas, Manfred
    Herden, Daniel
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 541 : 221 - 257
  • [5] Finitary Incidence Algebras
    Khripchenko, N. S.
    Novikov, B. V.
    [J]. COMMUNICATIONS IN ALGEBRA, 2009, 37 (05) : 1670 - 1676
  • [6] Khripchenko N, 2010, ALGEBRA DISCRET MATH, V9, P78
  • [7] Khripchenko NS., 2010, MAT STUD, V34, P30
  • [8] Rota G-C., 1964, Z WAHRSCH VERW GEBIE, V2, P340, DOI DOI 10.1007/BF00531932
  • [9] Indecomposable ideals in incidence algebras
    Sorkin, RD
    [J]. MODERN PHYSICS LETTERS A, 2003, 18 (33-35) : 2491 - 2499
  • [10] Stanley RP, 2012, CAM ST AD M, V49, P1