ON GENERALIZATIONS OF PRIME IDEALS

被引:33
作者
Ebrahimpour, M. [1 ]
Nekooei, R. [1 ]
机构
[1] Shahid Bahonar Univ Kerman, Dept Math, Kerman, Iran
关键词
Local ring; (n-1; n) - n-Almost prime ideal; n) - phi-Prime ideal; Von Neumann regular ring; n)-Weakly prime ideal; UNIQUE FACTORIZATION; COMMUTATIVE RINGS;
D O I
10.1080/00927872.2010.550794
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a commutative ring with identity. Let phi : S(R) -> S(R) boolean OR {empty set} be a function, where S(R) is the set of ideals of R. Suppose n >= 2 is a positive integer. A nonzero proper ideal I of R is called (n - 1, n) - phi-prime if, whenever a(1), a(2), ..., a(n) is an element of R and a(1)a(2) ... a(n) is an element of I\phi(I), the product of (n - 1) of the a(i)'s is in I. In this article, we study (n - 1, n) - phi-prime ideals (n >= 2). A number of results concerning (n - 1, n) - phi-prime ideals and examples of (n - 1, n) - phi-prime ideals are also given. Finally, rings with the property that for some phi, every proper ideal is (n - 1, n) - phi-prime, are characterized.
引用
收藏
页码:1268 / 1279
页数:12
相关论文
共 9 条
[1]  
Agargün AG, 1999, COMMUN ALGEBRA, V27, P1967
[2]   Generalizations of prime ideals [J].
Anderson, D. D. ;
Bataineh, Malik .
COMMUNICATIONS IN ALGEBRA, 2008, 36 (02) :686-696
[3]   ON n-ABSORBING IDEALS OF COMMUTATIVE RINGS [J].
Anderson, David F. ;
Badawi, Ayman .
COMMUNICATIONS IN ALGEBRA, 2011, 39 (05) :1646-1672
[4]  
Anderson DD, 2003, HOUSTON J MATH, V29, P831
[5]  
BADAWI A., HOUSTON J M IN PRESS
[6]   On 2-absorbing ideals of commutative rings [J].
Badawi, Ayman .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2007, 75 (03) :417-429
[7]   Unique factorization and birth of almost primes [J].
Bhatwadekar, SM ;
Sharma, PK .
COMMUNICATIONS IN ALGEBRA, 2005, 33 (01) :43-49
[8]  
Galavich S., 1978, MATH MAY, V51, P276
[9]  
Huckaba J. A., 1988, COMMUTATIVE RINGS ZE