Contact homology of good toric contact manifolds

被引:18
作者
Abreu, Miguel [1 ]
Macarini, Leonardo [2 ]
机构
[1] Inst Super Tecn, Dept Matemat, Ctr Anal Matemat Geometria & Sistemas Dinam, P-1049001 Lisbon, Portugal
[2] Univ Fed Rio de Janeiro, Inst Matemat, BR-21941909 Rio De Janeiro, Brazil
关键词
toric contact manifolds; toric symplectic cones; contact homology; INDEX;
D O I
10.1112/S0010437X11007044
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we show that any good toric contact manifold has a well-defined cylindrical contact homology, and describe how it can be combinatorially computed from the associated moment cone. As an application, we compute the cylindrical contact homology of a particularly nice family of examples that appear in the work of Gauntlett et al. on Sasaki-Einstein metrics. We show in particular that these give rise to a new infinite family of non-equivalent contact structures on S-2 x S-3 in the unique homotopy class of almost contact structures with vanishing first Chern class.
引用
收藏
页码:304 / 334
页数:31
相关论文
共 39 条
[1]   Kahler-Sasaki geometry of toric symplectic cones in action-angle coordinates [J].
Abreu, Miguel .
PORTUGALIAE MATHEMATICA, 2010, 67 (02) :121-153
[2]  
[Anonymous], 2001, J. Symplectic Geom.
[3]  
Banyaga A., 1993, SEMINAIRE GASTON DAR, P1
[4]   ON CONTACT MANIFOLDS [J].
BOOTHBY, WM ;
WANG, HC .
ANNALS OF MATHEMATICS, 1958, 68 (03) :721-734
[5]   Coherent orientations in symplectic field theory [J].
Bourgeois, F ;
Mohnke, K .
MATHEMATISCHE ZEITSCHRIFT, 2004, 248 (01) :123-146
[6]   Compactness results in Symplectic Field Theory [J].
Bourgeois, F ;
Eliashberg, Y ;
Hofer, H ;
Wysocki, K ;
Zehnder, E .
GEOMETRY & TOPOLOGY, 2003, 7 :799-888
[7]  
Bourgeois F, 2003, SYMPLECTIC CONTACT T, P55
[8]  
Bourgeois F, 2009, CRM PROC & LECT NOTE, V49, P45
[9]   An exact sequence for contact- and symplectic homology [J].
Bourgeois, Frederic ;
Oancea, Alexandru .
INVENTIONES MATHEMATICAE, 2009, 175 (03) :611-680
[10]   A note on toric contact geometry [J].
Boyer, CP ;
Galicki, K .
JOURNAL OF GEOMETRY AND PHYSICS, 2000, 35 (04) :288-298