Magnetoelectric and electromagnetic composite vibration energy harvester for wireless sensor networks

被引:26
作者
Qiu, Jing [1 ]
Chen, Hengjia [1 ]
Wen, Yumei [1 ]
Li, Ping [1 ]
机构
[1] Chongqing Univ, Coll Optoelect Engn, Sensors & Instruments Res Ctr, Chongqing 400044, Peoples R China
基金
中国国家自然科学基金;
关键词
Energy harvesting - Laminated composites - Wireless sensor networks;
D O I
10.1063/1.4918688
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this paper, a magnetoelectric (ME) and electromagnetic (EM) composite vibration energy harvester (VEH) employing a coil and a five-phase laminate ME transducer to convert low-frequency vibration energy into electrical energy are presented. The electric output performance of the proposed VEH has been investigated. Compared to a traditional single ME VEH or single EM VEH, the proposed ME/EM composite VEH can simultaneously obtain high voltage, large current, high power, and wide bandwidth. When the length of cantilever is 5 cm, the five-phase laminate composite ME transducer provides high voltage of 52V and the coil provides large current of 97.8 mA. The optimum output power of the VEH achieves 16.47 mW for an acceleration of 0.5 g at a frequency of 27.5 Hz. Remarkably, the proposed ME/EM composite VEHs have great potential for its application in wireless sensor network. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:4
相关论文
共 17 条
[1]   Broadband vibration energy harvesting based on cantilevered piezoelectric bi-stable composites [J].
Arrieta, A. F. ;
Delpero, T. ;
Bergamini, A. E. ;
Ermanni, P. .
APPLIED PHYSICS LETTERS, 2013, 102 (17)
[2]   Magnetic tuning of a kinetic energy harvester using variable reluctance [J].
Ayala-Garcia, I. N. ;
Mitcheson, P. D. ;
Yeatman, E. M. ;
Zhu, D. ;
Tudor, J. ;
Beeby, S. P. .
SENSORS AND ACTUATORS A-PHYSICAL, 2013, 189 :266-275
[3]   Magnetoelectric effect at thickness shear mode in ferrite-piezoelectric bilayer [J].
Bichurin, M. I. ;
Petrov, R. V. ;
Petrov, V. M. .
APPLIED PHYSICS LETTERS, 2013, 103 (09)
[4]   A piezomagnetoelastic structure for broadband vibration energy harvesting [J].
Erturk, A. ;
Hoffmann, J. ;
Inman, D. J. .
APPLIED PHYSICS LETTERS, 2009, 94 (25)
[5]   An electromagnetic, vibration-powered generator for intelligent sensor systems [J].
Glynne-Jones, P ;
Tudor, MJ ;
Beeby, SP ;
White, NM .
SENSORS AND ACTUATORS A-PHYSICAL, 2004, 110 (1-3) :344-349
[6]   Magnetoelectric properties and magnetomechanical energy harvesting from stray vibration and electromagnetic wave by Pb(Mg1/3Nb2/3)O3-Pb(Zr,Ti)O3 single crystal/Ni cantilever [J].
Kambale, Rahul C. ;
Yoon, Woon-Ha ;
Park, Dong-Soo ;
Choi, Jong-Jin ;
Ahn, Cheol-Woo ;
Kim, Jong-Woo ;
Hahn, Byung-Dong ;
Jeong, Dae-Yong ;
Lee, Byung Chul ;
Chung, Gwiy-Sang ;
Ryu, Jungho .
JOURNAL OF APPLIED PHYSICS, 2013, 113 (20)
[7]   Giant magnetoelectric effect in vacuum [J].
Kirchhof, Christine ;
Krantz, Matthias ;
Teliban, Iulian ;
Jahns, Robert ;
Marauska, Stephan ;
Wagner, Bernhard ;
Knoechel, Reinhard ;
Gerken, Martina ;
Meyners, Dirk ;
Quandt, Eckhard .
APPLIED PHYSICS LETTERS, 2013, 102 (23)
[8]   Resonance tuning of piezoelectric vibration energy scavenging generators using compressive axial preload [J].
Leland, Eli S. ;
Wright, Paul K. .
SMART MATERIALS AND STRUCTURES, 2006, 15 (05) :1413-1420
[9]   Colossal low-frequency resonant magnetomechanical and magnetoelectric effects in a three-phase ferromagnetic/elastic/piezoelectric composite [J].
Liu, Guoxi ;
Li, Xiaotian ;
Chen, Jianguo ;
Shi, Huaduo ;
Xiao, Wenlei ;
Dong, Shuxiang .
APPLIED PHYSICS LETTERS, 2012, 101 (14)
[10]   An alternative solution to improve sensitivity of resonant microcantilever chemical sensors:: comparison between using high-order modes and reducing dimensions [J].
Lochon, F ;
Dufour, I ;
Rebière, D .
SENSORS AND ACTUATORS B-CHEMICAL, 2005, 108 (1-2) :979-985