Dissolution of Portlandite in Pure Water: Part 1 Molecular Dynamics (MD) Approach

被引:12
作者
Salah Uddin, Khondakar Mohammad [1 ]
Izadifar, Mohammadreza [2 ]
Ukrainczyk, Neven [2 ]
Koenders, Eduardus [2 ]
Middendorf, Bernhard [1 ]
机构
[1] Univ Kassel, Dept Struct Mat & Construct Chem, Monchebergstr 7, D-34125 Kassel, Germany
[2] Tech Univ Darmstadt, Inst Construct & Bldg Mat, Franziska Braun Str 3, D-64287 Darmstadt, Germany
关键词
cement hydration; dissolution of portlandite; free energy surfaces; surface properties; molecular dynamics simulation; reactive force field; metadynamics; REACTIVE FORCE-FIELD; SIMULATIONS; CARBONATION; HYDROXIDE; HYDRATION; CAPTURE; CO2;
D O I
10.3390/ma15041404
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The current contribution proposes a multi-scale bridging modeling approach for the dissolution of crystals to connect the atomistic scale to the (sub-) micro-scale. This is demonstrated in the example of dissolution of portlandite, as a relatively simple benchmarking example for cementitious materials. Moreover, dissolution kinetics is also important for other industrial processes, e.g., acid gas absorption and pH control. In this work, the biased molecular dynamics (metadynamics) coupled with reactive force field is employed to calculate the reaction path as a free energy surface of calcium dissolution at 298 K in water from the different crystal facets of portlandite. It is also explained why the reactivity of the (010), (100), and (11 over bar 0) crystal facet is higher compared to the (001) facet. In addition, the influence of neighboring Ca crystal sites arrangements on the atomistic dissolution rates is explained as necessary scenarios for the upscaling. The calculated rate constants of all atomistic reaction scenarios provided an input catalog ready to be used in an upscaling kinetic Monte Carlo (KMC) approach.
引用
收藏
页数:13
相关论文
共 39 条
  • [1] Metadynamics
    Barducci, Alessandro
    Bonomi, Massimiliano
    Parrinello, Michele
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2011, 1 (05) : 826 - 843
  • [2] Volume stability of calcium hydroxide in aggressive solutions
    Beaudoin, JJ
    Catinaud, S
    Marchand, J
    [J]. CEMENT AND CONCRETE RESEARCH, 2001, 31 (01) : 149 - 151
  • [3] PLUMED: A portable plugin for free-energy calculations with molecular dynamics
    Bonomi, Massimiliano
    Branduardi, Davide
    Bussi, Giovanni
    Camilloni, Carlo
    Provasi, Davide
    Raiteri, Paolo
    Donadio, Davide
    Marinelli, Fabrizio
    Pietrucci, Fabio
    Broglia, Ricardo A.
    Parrinello, Michele
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (10) : 1961 - 1972
  • [4] EMPIRICAL POTENTIAL FOR HYDROCARBONS FOR USE IN SIMULATING THE CHEMICAL VAPOR-DEPOSITION OF DIAMOND FILMS
    BRENNER, DW
    [J]. PHYSICAL REVIEW B, 1990, 42 (15): : 9458 - 9471
  • [5] NEUTRON DIFFRACTION STUDY OF CALCIUM HYDROXIDE
    BUSING, WR
    LEVY, HA
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1957, 26 (03) : 563 - 568
  • [6] An overview of spatial microscopic and accelerated kinetic Monte Carlo methods
    Chatterjee, Abhijit
    Vlachos, Dionisios G.
    [J]. JOURNAL OF COMPUTER-AIDED MATERIALS DESIGN, 2007, 14 (02): : 253 - 308
  • [7] ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation
    Chenoweth, Kimberly
    van Duin, Adri C. T.
    Goddard, William A., III
    [J]. JOURNAL OF PHYSICAL CHEMISTRY A, 2008, 112 (05) : 1040 - 1053
  • [8] ReaxFFMgH reactive force field for magnesium hydride systems
    Cheung, S
    Deng, WQ
    van Duin, ACT
    Goddard, WA
    [J]. JOURNAL OF PHYSICAL CHEMISTRY A, 2005, 109 (05) : 851 - 859
  • [9] Analysis of Hydroxide Sorbents for CO2 Capture from Warm Syngas
    Couling, David J.
    Das, Ujjal
    Green, William H.
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2012, 51 (41) : 13473 - 13481
  • [10] A reactive molecular dynamics simulation of the silica-water interface
    Fogarty, Joseph C.
    Aktulga, Hasan Metin
    Grama, Ananth Y.
    van Duin, Adri C. T.
    Pandit, Sagar A.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (17)