Automatic Segmentation of Different Pathologies from Cardiac Cine MRI Using Registration and Multiple Component EM Estimation

被引:0
作者
Shi, Wenzhe [1 ]
Zhuang, Xiahai [2 ]
Wang, Haiyan [1 ]
Duckett, Simon [3 ]
Oregan, Declan [4 ]
Edwards, Philip [1 ]
Ourselin, Sebastien [2 ]
Rueckert, Daniel [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Biomed Image Anal Grp, London SW7 2AZ, England
[2] UCL, Ctr Med Image Comp, London, England
[3] Kings Coll London, Rayne Inst, London, England
[4] Hammersmith Hosp, Robert Steiner MRI Unit, London, England
来源
FUNCTIONAL IMAGING AND MODELING OF THE HEART | 2011年 / 6666卷
关键词
LEFT-VENTRICLE; HEART SEGMENTATION; IMAGES; ALGORITHM; TRACKING; ATLAS; MODEL;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we develop a framework for the automatic detection and segmentation of the ventricle and myocardium from multislice, short-axis cine MR images. The segmentation framework has the ability to deal with large shape variability of the heart, poorly defined boundaries and abnormal intensity distribution of the myocardium (e.g. due to infarcts). We integrate a series of state-of-the-art techniques into a fully automatic workflow, including a detection algorithm for the LV, atlas-based segmentation, and intensity-based refinement using a Gaussian mixture model that is optimized using the Expectation Maximization (EM) algorithm and the graph cut algorithm. We evaluate this framework on three different patient groups, one with infarction, one with left ventricular hypertrophy (both are common result of cardiovascular diseases) and another group of subjects with normal heart anatomy. Results indicate that the proposed method is capable of producing segmentation results that show good robustness and high accuracy (Dice 0.908 +/- 0.025 for the endocardial and 0.946 +/- 0.016 for the epicardial segmentations) across all patient groups with and without pathology.
引用
收藏
页码:163 / 170
页数:8
相关论文
共 20 条
[1]   Unified segmentation [J].
Ashburner, J ;
Friston, KJ .
NEUROIMAGE, 2005, 26 (03) :839-851
[2]  
Boykov Y, 2003, NINTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS I AND II, PROCEEDINGS, P26
[3]   EXACT MAXIMUM A-POSTERIORI ESTIMATION FOR BINARY IMAGES [J].
GREIG, DM ;
PORTEOUS, BT ;
SEHEULT, AH .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1989, 51 (02) :271-279
[4]  
GREVERA G, 2002, IEEE T MED IMAGING, V15, P881
[5]  
Huang S., 2009, P 5 INT C FUNCT IM M, P339
[6]  
Huang S., 2010, J DIGIT IMAGING, P1, DOI DOI 10.1007/S10278-010-9315-4
[7]   Automatic segmentation of the left ventricle in cardiac MR and CT images [J].
Jolly, Marie-Pierre .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2006, 70 (02) :151-163
[8]   Automated segmentation of the left ventricle in cardiac MRI [J].
Kaus, MR ;
von Berg, J ;
Weese, R ;
Niessen, W ;
Pekar, V .
MEDICAL IMAGE ANALYSIS, 2004, 8 (03) :245-254
[9]   Automatic cardiac MRI myocardium segmentation using graphcut [J].
Kedenburg, Gunnar ;
Cocosco, Chris A. ;
Koethe, Ullrich ;
Niessen, Wiro J. ;
Vonken, Evert-jan P. A. ;
Viergever, Max A. .
MEDICAL IMAGING 2006: IMAGE PROCESSING, PTS 1-3, 2006, 6144
[10]  
Khan SM, 2006, LECT NOTES COMPUT SC, V3954, P133