Bayesian inference for exponential random graph models

被引:132
作者
Caimo, Alberto [1 ]
Friel, Nial [1 ]
机构
[1] Univ Coll Dublin, Sch Math Sci, Dublin, Ireland
基金
爱尔兰科学基金会;
关键词
Exponential random graph models; Social network analysis; Markov chain Monte Carlo; CHAIN MONTE-CARLO; MAXIMUM-LIKELIHOOD; FAMILY; DISTRIBUTIONS;
D O I
10.1016/j.socnet.2010.09.004
中图分类号
Q98 [人类学];
学科分类号
030303 ;
摘要
Exponential random graph models are extremely difficult models to handle from a statistical viewpoint, since their normalising constant, which depends on model parameters, is available only in very trivial cases. We show how inference can be carried out in a Bayesian framework using a MCMC algorithm, which circumvents the need to calculate the normalising constants. We use a population MCMC approach which accelerates convergence and improves mixing of the Markov chain. This approach improves performance with respect to the Monte Carlo maximum likelihood method of Geyer and Thompson (1992). (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:41 / 55
页数:15
相关论文
共 38 条
[1]  
Airoldi EM, 2008, J MACH LEARN RES, V9, P1981
[2]  
[Anonymous], 2006, P 22 ANN C UNC ART I
[3]  
[Anonymous], 2008, Journal of Statistical Software, V24, P1, DOI DOI 10.18637/JSS.V024.I03
[4]  
Beaumont MA, 2002, GENETICS, V162, P2025
[5]  
BESAG J, 1974, J ROY STAT SOC B MET, V36, P192
[6]  
Erdos P., 1959, PUBL MATH-DEBRECEN, V6, P290, DOI DOI 10.5486/PMD.1959.6.3-4.12
[7]   MARKOV GRAPHS [J].
FRANK, O ;
STRAUSS, D .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1986, 81 (395) :832-842
[8]   Bayesian Inference in Hidden Markov Random Fields for Binary Data Defined on Large Lattices [J].
Friel, N. ;
Pettitt, A. N. ;
Reeves, R. ;
Wit, E. .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2009, 18 (02) :243-261
[9]  
GEYER CJ, 1992, J R STAT SOC B, V54, P657
[10]   ADAPTIVE DIRECTION SAMPLING [J].
GILKS, WR ;
ROBERTS, GO ;
GEORGE, EI .
STATISTICIAN, 1994, 43 (01) :179-189