The Bohr-Rogosinski Radius for a Certain Class of Close-to-Convex Harmonic Mappings

被引:6
作者
Ahamed, Molla Basir [1 ]
机构
[1] Jadavpur Univ, Dept Math, Kolkata 700032, W Bengal, India
关键词
Analytic; univalent; harmonic functions; Starlike; convex; close-to-convex functions; Coefficient estimates; Growth theorem; Bohr radius; Bohr-Rogosisnki radius; ANALYTIC-FUNCTIONS; POWER-SERIES; INEQUALITY; THEOREM; SUBORDINATION; FAMILIES;
D O I
10.1007/s40315-022-00444-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let B be the class of analytic functions f in the unit disk D := {z is an element of C : vertical bar z vertical bar < 1} such that vertical bar f (z) vertical bar< 1 for all z. D. If f. B is of the form f (z) = Sigma(infinity)(n=0) a(n) z(n), then vertical bar Sigma(N)(n=0) an zn vertical bar < 1 holds for |z| < 1/2 and the radius 1/2 is best possible for the class B. This inequality is called the Rogosinski inequality and the corresponding radius is called the Rogosinski radius. Let H be the class of harmonic functions f = h + (g) over bar in the unit disk D, where h and g are analytic in D. Let P-H(0) (a) = {f = h + (g) over bar is an element of H : Re(h' (z) - alpha) > |g (z)| with 0 <= alpha < 1, g' (0) = 0, z. D} be the subclass of close-to-convex harmonic mappings. In this paper, in view of the Euclidean distance, we obtain the sharp Bohr-Rogosinski radius in terms of area measure Sr, Jacobian J f ( z) of the functions in the class P0H (a).
引用
收藏
页数:19
相关论文
共 54 条
[1]   Bohr radius for subordinating families of analytic functions and bounded harmonic mappings [J].
Abu Muhanna, Y. ;
Ali, Rosihan M. ;
Ng, Zhen Chuan ;
Hasni, Siti Farah M. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 420 (01) :124-136
[2]   Bohr's phenomenon in subordination and bounded harmonic classes [J].
Abu Muhanna, Yusuf .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2010, 55 (11) :1071-1078
[3]  
Ahamed MB., 2022, ANN ACAD SCI FENN-M, V47, P103, DOI DOI 10.54330/AFM.112561
[4]   Improved Bohr inequalities for certain class of harmonic univalent functions [J].
Ahamed, Molla Basir ;
Allu, Vasudevarao ;
Halder, Himadri .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2023, 68 (02) :267-290
[5]   Bohr radius for certain classes of close-to-convex harmonic mappings [J].
Ahamed, Molla Basir ;
Allu, Vasudevarao ;
Halder, Himadri .
ANALYSIS AND MATHEMATICAL PHYSICS, 2021, 11 (03)
[6]   On the Rogosinski radius for holomorphic mappings and some of its applications [J].
Aizenberg, L ;
Elin, M ;
Shoikhet, D .
STUDIA MATHEMATICA, 2005, 168 (02) :147-158
[7]   Multidimensional analogues of Bohr's theorem on power series [J].
Aizenberg, L .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (04) :1147-1155
[8]  
Aizenberg L., 2009, Comput. Methods Funct. Theory, V9, P65
[9]   Remarks on the Bohr and Rogosinski phenomena for power series [J].
Aizenberg, Lev .
ANALYSIS AND MATHEMATICAL PHYSICS, 2012, 2 (01) :69-78
[10]   Bohr-Rogosinski Inequalities for Bounded Analytic Functions [J].
Alkhaleefah, Seraj A. ;
Kayumov, Ilgiz R. ;
Ponnusamy, Saminathan .
LOBACHEVSKII JOURNAL OF MATHEMATICS, 2020, 41 (11) :2110-2119