The Bohr-Rogosinski Radius for a Certain Class of Close-to-Convex Harmonic Mappings

被引:6
作者
Ahamed, Molla Basir [1 ]
机构
[1] Jadavpur Univ, Dept Math, Kolkata 700032, W Bengal, India
关键词
Analytic; univalent; harmonic functions; Starlike; convex; close-to-convex functions; Coefficient estimates; Growth theorem; Bohr radius; Bohr-Rogosisnki radius; ANALYTIC-FUNCTIONS; POWER-SERIES; INEQUALITY; THEOREM; SUBORDINATION; FAMILIES;
D O I
10.1007/s40315-022-00444-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let B be the class of analytic functions f in the unit disk D := {z is an element of C : vertical bar z vertical bar < 1} such that vertical bar f (z) vertical bar< 1 for all z. D. If f. B is of the form f (z) = Sigma(infinity)(n=0) a(n) z(n), then vertical bar Sigma(N)(n=0) an zn vertical bar < 1 holds for |z| < 1/2 and the radius 1/2 is best possible for the class B. This inequality is called the Rogosinski inequality and the corresponding radius is called the Rogosinski radius. Let H be the class of harmonic functions f = h + (g) over bar in the unit disk D, where h and g are analytic in D. Let P-H(0) (a) = {f = h + (g) over bar is an element of H : Re(h' (z) - alpha) > |g (z)| with 0 <= alpha < 1, g' (0) = 0, z. D} be the subclass of close-to-convex harmonic mappings. In this paper, in view of the Euclidean distance, we obtain the sharp Bohr-Rogosinski radius in terms of area measure Sr, Jacobian J f ( z) of the functions in the class P0H (a).
引用
收藏
页数:19
相关论文
共 54 条
  • [1] Bohr radius for subordinating families of analytic functions and bounded harmonic mappings
    Abu Muhanna, Y.
    Ali, Rosihan M.
    Ng, Zhen Chuan
    Hasni, Siti Farah M.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 420 (01) : 124 - 136
  • [2] Bohr's phenomenon in subordination and bounded harmonic classes
    Abu Muhanna, Yusuf
    [J]. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2010, 55 (11) : 1071 - 1078
  • [3] Ahamed M.B., 2022, ANN FENN MATH, V47, P103
  • [4] Improved Bohr inequalities for certain class of harmonic univalent functions
    Ahamed, Molla Basir
    Allu, Vasudevarao
    Halder, Himadri
    [J]. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2023, 68 (02) : 267 - 290
  • [5] Bohr radius for certain classes of close-to-convex harmonic mappings
    Ahamed, Molla Basir
    Allu, Vasudevarao
    Halder, Himadri
    [J]. ANALYSIS AND MATHEMATICAL PHYSICS, 2021, 11 (03)
  • [6] On the Rogosinski radius for holomorphic mappings and some of its applications
    Aizenberg, L
    Elin, M
    Shoikhet, D
    [J]. STUDIA MATHEMATICA, 2005, 168 (02) : 147 - 158
  • [7] Multidimensional analogues of Bohr's theorem on power series
    Aizenberg, L
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (04) : 1147 - 1155
  • [8] Aizenberg L., 2009, COMPUT METH FUNCT TH, V9, P65, DOI DOI 10.1007/BF03321715
  • [9] Remarks on the Bohr and Rogosinski phenomena for power series
    Aizenberg, Lev
    [J]. ANALYSIS AND MATHEMATICAL PHYSICS, 2012, 2 (01) : 69 - 78
  • [10] Bohr-Rogosinski Inequalities for Bounded Analytic Functions
    Alkhaleefah, Seraj A.
    Kayumov, Ilgiz R.
    Ponnusamy, Saminathan
    [J]. LOBACHEVSKII JOURNAL OF MATHEMATICS, 2020, 41 (11) : 2110 - 2119