On Periodic Solutions of the Incompressible Navier-Stokes Equations on Non-compact Riemannian Manifolds

被引:5
作者
Thieu Huy Nguyen [1 ]
Truong Xuan Pham [2 ]
Thi Van Nguyen [2 ]
Thi Ngoc Ha Vu [1 ]
机构
[1] Hanoi Univ Sci & Technol, Sch Appl Math & Informat, 1 Dai Co Viet, Hanoi, Vietnam
[2] Thuyloi Univ, Fac Informat Technol, Dept Math, 175 Tay Son, Hanoi, Vietnam
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2022年 / 26卷 / 03期
关键词
Navier-Stokes equations; non-compact Riemannian manifolds; negative Ricci; curvature tensors; periodic solutions; stability; EXISTENCE; UNIQUENESS; FLOW; FORMULATION; REGULARITY; LP;
D O I
10.11650/tjm/211205
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the existence, uniqueness and stability of the time periodic mild solutions to the incompressible Navier-Stokes equations on the noncompact manifolds with negative Ricci curvature tensor. In our strategy, we combine the dispersive and smoothing estimates for Stokes semigroups and Massera-type theorem to establish the existence and uniqueness of the time periodic mild solution to Stokes equation on Riemannian manifolds. Then using fixed point arguments, we can pass to semilinear equations to obtain the existence and uniqueness of the periodic solution to the imcompressible Navier-Stokes equations under the action of a periodic external force. The stability of the solution is also proved by using the cone inequality.
引用
收藏
页码:607 / 633
页数:27
相关论文
共 38 条
[1]   The formulation of the Navier-Stokes equations on Riemannian manifolds [J].
Chan, Chi Hin ;
Czubak, Magdalena ;
Disconzi, Marcelo M. .
JOURNAL OF GEOMETRY AND PHYSICS, 2017, 121 :335-346
[2]   Remarks on the weak formulation of the Navier-Stokes equations on the 2D hyperbolic space [J].
Chan, Chi Hin ;
Czubak, Magdalena .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2016, 33 (03) :655-698
[3]  
Daleckii Ju. L., 1974, Translations of Mathematical Monographs, V43
[4]   A CLASS OF NONSYMMETRIC HARMONIC RIEMANNIAN SPACES [J].
DAMEK, E ;
RICCI, F .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 27 (01) :139-142
[5]  
Eberlein PatrickB., 1996, GEOMETRY NONPOSITIVE
[6]   GROUPS OF DIFFEOMORPHISMS AND MOTION OF AN INCOMPRESSIBLE FLUID [J].
EBIN, DG ;
MARSDEN, J .
ANNALS OF MATHEMATICS, 1970, 92 (01) :102-&
[7]   EXISTENCE AND UNIQUENESS OF TIME-PERIODIC SOLUTIONS TO THE NAVIER-STOKES EQUATIONS IN THE WHOLE PLANE [J].
Galdi, Giovanni P. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2013, 6 (05) :1237-1257
[8]   On Time-Periodic Flow of a Viscous Liquid past a Moving Cylinder [J].
Galdi, Giovanni P. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2013, 210 (02) :451-498
[9]   Existence of time-periodic solutions to the Navier-Stokes equations around a moving body [J].
Galdi, GP ;
Silvestre, AL .
PACIFIC JOURNAL OF MATHEMATICS, 2006, 223 (02) :251-267
[10]   Existence and uniqueness of time-periodic physically reasonable Navier-Stokes flow past a body [J].
Galdi, GP ;
Sohr, H .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2004, 172 (03) :363-406