Superconvergence of a 3D finite element method for stationary Stokes and Navier-Stokes problems

被引:9
|
作者
Matthies, G
Skrzypacz, P
Tobiska, L
机构
[1] Otto Von Guericke Univ, Inst Anal & Numer, D-39016 Magdeburg, Germany
[2] Ruhr Univ Bochum, Fak Math, D-44780 Bochum, Germany
关键词
finite elements; Navier-Stokes equations; superconvergence; postprocessing;
D O I
10.1002/num.20058
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the Poisson equation on rectangular and brick meshes it is well known that the piecewise linear conforming finite element solution approximates the interpolant to a higher order than the solution itself. In this article, this type of supercloseness property is established for a special interpolant of the Q(2) - P-1(disc) element applied to the 3D stationary Stokes and Navier-Stokes problem, respectively. Moreover, applying a Q(3) - P-2(disc) postprocessing technique, we can also state a superconvergence property for the discretization error of the postprocessed discrete solution to the solution itself. Finally, we show that inhomogeneous boundary values can be approximated by the Lagrange Q(2)-interpolation without influencing the superconvergence property. Numerical experiments verify the predicted convergence rates. Moreover, a cost-benefit analysis between the two third-order methods, the post-processed Q(2) - P-1(disc) discretization, and the Q(3) - P-2(disc) discretization is carried out. (c) 2004 Wiley Periodicals, Inc.
引用
收藏
页码:701 / 725
页数:25
相关论文
共 50 条
  • [41] MIXED FINITE ELEMENT METHODS FOR INCOMPRESSIBLE FLOW: STATIONARY NAVIER-STOKES EQUATIONS
    Cai, Zhiqiang
    Wang, Chunbo
    Zhang, Shun
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (01) : 79 - 94
  • [42] A NEW NONCONFORMING MIXED FINITE ELEMENT SCHEME FOR THE STATIONARY NAVIER-STOKES EQUATIONS
    Shi Dongyang
    Ren Jincheng
    Gong Wei
    ACTA MATHEMATICA SCIENTIA, 2011, 31 (02) : 367 - 382
  • [43] Superconvergence of the Finite Volume Method for Stokes Problems
    Zhang, Tie
    Tang, Yongchao
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2018, 11 (02) : 398 - 412
  • [44] A stabilised characteristic finite element method for transient Navier-Stokes equations
    Zhang, Tong
    Si, Zhiyong
    He, Yinnian
    INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 2010, 24 (09) : 369 - 381
  • [45] The postprocessed mixed finite-element method for the Navier-Stokes equations
    Ayuso, B
    García-Archilla, B
    Novo, J
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (03) : 1091 - 1111
  • [46] A MIXED FINITE ELEMENT METHOD ON A STAGGERED MESH FOR NAVIER-STOKES EQUATIONS
    Houde Han Ming Yan Department of Mathematics
    Journal of Computational Mathematics, 2008, 26 (06) : 816 - 824
  • [47] A finite element method for the resolution of the Reduced Navier-Stokes/Prandtl equations
    Barrenechea, Gabriel R.
    Chouly, Franz
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2009, 89 (01): : 54 - 68
  • [48] Local projection stabilized finite element method for Navier-Stokes equations
    覃燕梅
    冯民富
    罗鲲
    吴开腾
    Applied Mathematics and Mechanics(English Edition), 2010, 31 (05) : 651 - 664
  • [49] Study of Multiple Solutions for the Navier-Stokes Equations by a Finite Element Method
    Xu, Huanxia
    Lin, Ping
    Si, Xinhui
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2014, 7 (01) : 107 - 122
  • [50] Local projection stabilized finite element method for Navier-Stokes equations
    Qin, Yan-mei
    Feng, Min-fu
    Luo, Kun
    Wu, Kai-teng
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2010, 31 (05) : 651 - 664