On explicit estimates for S(t), S1(t), and ζ (1/2+it) under the Riemann Hypothesis

被引:9
作者
Simonic, Aleksander [1 ]
机构
[1] Univ New South Wales Canberra, Sch Sci, Canberra, ACT, Australia
关键词
Riemann zeta-function; Riemann Hypothesis; Explicit results; ZEROS;
D O I
10.1016/j.jnt.2021.05.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Assuming the Riemann Hypothesis, we provide explicit upper bounds for moduli of S(t), S-1(t), and zeta(1/2 + it) while comparing them with recently proven unconditional ones. As a corollary we obtain a conditional explicit bound on gaps between consecutive zeros of the Riemann zeta-function. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:464 / 491
页数:28
相关论文
共 30 条
[1]   DECOUPLING, EXPONENTIAL SUMS AND THE RIEMANN ZETA FUNCTION [J].
Bourgain, J. .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 30 (01) :205-224
[2]  
Brent R.P., 2020, ARXIV200806140
[3]   ACCURATE ESTIMATION OF SUMS OVER ZEROS OF THE RIEMANN ZETA-FUNCTION [J].
Brent, Richard P. ;
Platt, David J. ;
Trudgian, Timothy S. .
MATHEMATICS OF COMPUTATION, 2021, 90 (332) :2923-2935
[4]   BANDLIMITED APPROXIMATIONS AND ESTIMATES FOR THE RIEMANN ZETA-FUNCTION [J].
Carneiro, Emanuel ;
Chirre, Andres ;
Milinovich, Micah B. .
PUBLICACIONS MATEMATIQUES, 2019, 63 (02) :601-661
[5]  
Carneiro E, 2013, MATH ANN, V356, P939, DOI 10.1007/s00208-012-0876-z
[6]   Bounding |ζ(1/2+it)| on the Riemann hypothesis [J].
Chandee, Vorrapan ;
Soundararajan, K. .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2011, 43 :243-250
[7]  
Cohen H, High precision computation of Hardy-Littlewood constants
[8]   On the null point of zeta function [J].
Cramer, H .
MATHEMATISCHE ZEITSCHRIFT, 1918, 2 :237-241
[9]  
Fujii A., 2004, COMMENTARII MATH U S, V53, P85
[10]  
Fujii A., 2006, COMMENT MATH U ST PA, V55, P135