Biodegradable and Biocompatible Synthetic Saccharide-Peptide Hydrogels for Three-Dimensional Stem Cell Culture

被引:53
作者
Chawla, Kanika [1 ]
Yu, Ting-Bin [1 ]
Liao, Sophia W. [2 ]
Guan, Zhibin [1 ,2 ]
机构
[1] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA
[2] Univ Calif Irvine, Dept Biomed Engn, Irvine, CA 92697 USA
关键词
RING-OPENING POLYMERIZATION; CHONDROGENIC DIFFERENTIATION; MICHAEL ADDITION; EXTRACELLULAR MATRICES; CROSS-LINKING; STROMAL CELLS; TISSUE; CARBOHYDRATE; CARTILAGE; BONE;
D O I
10.1021/bm100980w
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Saccharide-peptide hydrogels have been developed in our laboratory as new synthetic extracellular matrices for regenerative medicine applications. In this work, we have expanded on our previously reported system and applied copolymerization of cysteine (Cys) and vinyl sulfone (VS)-functionalized saccharide-peptide polymers via Michael-type addition for encapsulation and 3D culture of cells. Specifically, our aims were to (1) develop a novel hydrogel platform, which could be applied for encapsulating and culturing mesenchymal stem cells (MSCs) in a 3D environment, (2) characterize the tunable properties of the hydrogel, specifically, degradation, mechanical, and gel network properties, and (3) determine the biocompatibility of the saccharide-peptide hydrogel material with MSCs. Hydrogel mechanical properties were tunable by varying the VS:Cys ratio (=0.5, 1, or 2) as well as the pH (6, 7, or 8) of the cross-linking components. Stiffer gels were formed at VS:Cys = 1 and pH 6 or 7. Gels formed at pH 8 or with excess Cys (VS:Cys = 0.5) or VS (VS:Cys = 2) were significantly softer. Cross-linking pH and VS:Cys ratio also had an effect on the degradation behavior of the VS:Cys gels, with higher cross-linking pH resulting in an accelerated loss of mass. On the basis of environmental scanning electron microscopy (ESEM) analysis and fluorescence microscopy, all hydrogels appeared to exhibit porous gel networks. MSCs cultured in monolayer and exposed to soluble Cys or VS copolymers (0.1-5 mg/mL) did not exhibit measurable cytotoxicity. In addition, MSCs were cultured in 3D for up to 14 days in vitro without deleterious effects on cell viability. In summary, we have established and characterized a tunable 3D saccharide-peptide hybrid copolymer hydrogel platform for culturing MSCs. Future studies will focus on utilizing the hydrogel system for controlling the differentiation of MSCs.
引用
收藏
页码:560 / 567
页数:8
相关论文
共 69 条
[1]   Tissue-engineered neogenesis of human-shaped mandibular condyle from rat mesenchymal stem cells [J].
Alhadlaq, A ;
Mao, JJ .
JOURNAL OF DENTAL RESEARCH, 2003, 82 (12) :951-956
[2]   Biosynthetic hydrogel scaffolds made from fibrinogen and polyethylene glycol for 3D cell cultures [J].
Almany, L ;
Seliktar, D .
BIOMATERIALS, 2005, 26 (15) :2467-2477
[3]   GLYCOPEPTIDE SYNTHESIS BY AN ALPHA-AMINO-ACID N-CARBOXYANHYDRIDE (NCA) METHOD - RING-OPENING POLYMERIZATION OF A SUGAR-SUBSTITUTED NCA [J].
AOI, K ;
TSUTSUMIUCHI, K ;
OKADA, M .
MACROMOLECULES, 1994, 27 (03) :875-877
[4]   Poly(vinyl alcohol)-acrylamide hydrogels as load-bearing cartilage substitute [J].
Bodugoz-Senturk, Hatice ;
Macias, Celia E. ;
Kung, Jean H. ;
Muratoglu, Orhun K. .
BIOMATERIALS, 2009, 30 (04) :589-596
[5]   Synthesis of two-component injectable polyurethanes for bone tissue engineering [J].
Bonzani, Ian C. ;
Adhikari, Raju ;
Houshyar, Shadi ;
Mayadunne, Roshan ;
Gunatillake, Pathiraja ;
Stevens, Molly M. .
BIOMATERIALS, 2007, 28 (03) :423-433
[6]   Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly(ethylene glycol) hydrogels [J].
Bryant, SJ ;
Anseth, KS .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, 2002, 59 (01) :63-72
[7]   Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering [J].
Burdick, JA ;
Anseth, KS .
BIOMATERIALS, 2002, 23 (22) :4315-4323
[8]  
Buxton AN, 2011, TISSUE ENG PT A, V17, P371, DOI [10.1089/ten.tea.2009.0839, 10.1089/ten.TEA.2009.0839]
[9]   Geometric control of cell life and death [J].
Chen, CS ;
Mrksich, M ;
Huang, S ;
Whitesides, GM ;
Ingber, DE .
SCIENCE, 1997, 276 (5317) :1425-1428
[10]   The cavity-to-cavity migration of leukaemic cells through 3D honey-combed hydrogels with adjustable internal dimension and stiffness [J].
da Silva, Joakim ;
Lautenschlaeger, Franziska ;
Sivaniah, Easan ;
Guck, Jochen R. .
BIOMATERIALS, 2010, 31 (08) :2201-2208