D-Optimal Designs for the Mitscherlich Non-Linear Regression Function

被引:1
作者
Heidari, Maliheh [1 ]
Abu Manju, Md [1 ]
IJzerman-Boon, Pieta C. [2 ]
van den Heuvel, Edwin R. [1 ]
机构
[1] Eindhoven Univ Technol, Dept Math & Comp Sci, NL-5600 MB Eindhoven, Netherlands
[2] MSD, Ctr Math Sci, NL-5342 CC Oss, Netherlands
关键词
exponential family; generalized non-linear models; weighted least squares; C-OPTIMAL DESIGNS; MODELS; POISSON;
D O I
10.3103/S1066530722010033
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Mitscherlich's function is a well-known three-parameter non-linear regression function that quantifies the relation between a stimulus or a time variable and a response. It has many applications, in particular in the field of measurement reliability. Optimal designs for estimation of this function have been constructed only for normally distributed responses with homoscedastic variances. In this paper we generalize this literature to D-optimal designs for discrete and continuous responses having their distribution function in the exponential family. We also demonstrate that our D-optimal designs can be identical to and different from optimal designs for variance weighted linear regression.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 29 条
[1]   DESIGN OF EXPERIMENTS IN NON-LINEAR SITUATIONS [J].
BOX, GEP ;
LUCAS, HL .
BIOMETRIKA, 1959, 46 (1-2) :77-90
[2]  
Clark DR., 2004, CAS discussion paper program, P117
[3]  
CORDEIRO GM, 1991, J ROY STAT SOC B MET, V53, P629
[4]   Nonlinear models for repeated measurement data: An overview and update [J].
Davidian, M ;
Giltinan, DM .
JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2003, 8 (04) :387-419
[5]   Robust and efficient designs for the Michaelis-Menten model [J].
Dette, H ;
Biedermann, S .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2003, 98 (463) :679-686
[6]   Optimal designs for the emax, log-linear and exponential models [J].
Dette, H. ;
Kiss, C. ;
Bevanda, M. ;
Bretz, Frank .
BIOMETRIKA, 2010, 97 (02) :513-518
[7]   Optimal designs when the variance is a function of the mean [J].
Dette, H ;
Wong, WK .
BIOMETRICS, 1999, 55 (03) :925-929
[8]  
Fedorov V.V., 2013, OPTIMAL DESIGN NONLI, DOI DOI 10.1201/B15054
[9]   Optimal design of dose response experiments: A model-oriented approach [J].
Fedorov, VV ;
Leonov, SL .
DRUG INFORMATION JOURNAL, 2001, 35 (04) :1373-1383
[10]  
FORD I, 1992, J ROY STAT SOC B MET, V54, P569