Single amino acid changes in the Nipah and Hendra virus attachment glycoproteins distinguish EphrinB2 from EphrinB3 usage

被引:82
作者
Negrete, Oscar A.
Chu, David
Aguilar, Hector C.
Lee, Benhur
机构
[1] Univ Calif Los Angeles, Dept Microbiol Mol Genet & Immunol, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Pathol & Lab Med, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, AIDS Inst, Los Angeles, CA 90095 USA
关键词
D O I
10.1128/JVI.00999-07
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The henipaviruses, Nipah virus (NiV) and Hendra virus (HeV), are lethal emerging paramyxoviruses. EphrinB2 and ephrinB3 have been identified as receptors for henipavirus entry. NiV and HeV share similar cellular tropisms and likely use an identical receptor set, although a quantitative comparison of receptor usage by NiV and HeV has not been reported. Here we show that (i) soluble NiV attachment protein G (sNiV-G) bound to cell surface-expressed ephrinB3 with a 30-fold higher affinity than that of sHeV-G, (ii) NiV envelope pseudotyped reporter virus (NiVpp) entered ephrinB3-expres sing cells much more efficiently than did HeV pseudotyped particles (HeVpp), and (iii) NiVpp but not HeVpp entry was inhibited efficiently by soluble ephrinB3. These data underscore the finding that NiV uses ephrinB3 more efficiently than does HeV. Henipavirus G chimeric protein analysis implicated residue 507 in the G ectodomain in efficient ephrinB3 usage. Curiously, alternative versions of published HeV-G sequences show variations at residue 507 that can clearly affect ephrinB3 but not ephrinB2 usage. We further defined surrounding mutations (W504A and E505A) that diminished ephrinB3-dependent binding and viral entry without compromising ephrin]32 receptor usage and another mutation (E533Q) that abrogated both ephrinB2 and -B3 usage. Our results suggest that ephrinB2 and -B3 binding determinants on henipavirus G are distinct and dissociable. Global expression analysis showed that ephrinB3, but not ephrinB2, is expressed in the brain stem. Thus, ephrinB3-mediated viral entry and pathology may underlie the severe brain stem neuronall dysfunction seen in fatal Nipah viral encephalitis. Characterizing the determinants of ephrinlB2 versus -B3 usage will further our understanding of henipavirus pathogenesis.
引用
收藏
页码:10804 / 10814
页数:11
相关论文
共 52 条
[1]   Isolation and molecular identification of Nipah virus from pigs [J].
AbuBakar, S ;
Chang, LY ;
Ali, ARM ;
Sharifah, SH ;
Yusoff, K ;
Zamrod, Z .
EMERGING INFECTIOUS DISEASES, 2004, 10 (12) :2228-2230
[2]  
AGUILAR HC, 2006, ANN M AM SOC VIROL, P19
[3]  
[Anonymous], 2004, HLLTH SCI B, V2, P5
[4]   Ephrin-B3 is a myelin-based inhibitor of neurite outgrowth [J].
Benson, MD ;
Romero, MI ;
Lush, ME ;
Lu, QR ;
Henkemeyer, M ;
Parada, LF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (30) :10694-10699
[5]   Identification of hendra virus g glycoprotein residues that are critical for receptor binding [J].
Bishop, Kimberly A. ;
Stantchev, Tzanko S. ;
Hickey, Andrew C. ;
Khetawat, Dimple ;
Bossart, Katharine N. ;
Krasnoperov, Valery ;
Gill, Parkash ;
Feng, Yan Ru ;
Wang, Lemin ;
Eaton, Bryan T. ;
Wang, Lin-Fa ;
Broder, Christopher C. .
JOURNAL OF VIROLOGY, 2007, 81 (11) :5893-5901
[6]   Ephrins and their receptors: Binding versus biology [J].
Blits-Huizinga, CT ;
Nelersa, CM ;
Malhotra, A ;
Liebl, DJ .
IUBMB LIFE, 2004, 56 (05) :257-265
[7]   Ephrin-B2 ligand is a functional receptor for Hendra virus and Nipah virus [J].
Bonaparte, MI ;
Dimitrov, AS ;
Bossart, KN ;
Crameri, G ;
Mungal, BA ;
Bishop, KA ;
Choudhry, V ;
Dimitrov, DS ;
Wang, LF ;
Eaton, BT ;
Broder, CC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (30) :10652-10657
[8]   Receptor binding, fusion inhibition, and induction of cross-reactive neutralizing antibodies by a soluble G glycoprotein of Hendra virus [J].
Bossart, KN ;
Crameri, G ;
Dimitrov, AS ;
Mungall, BA ;
Feng, YR ;
Patch, JR ;
Choudhary, A ;
Wang, LF ;
Eaton, BT ;
Broder, CC .
JOURNAL OF VIROLOGY, 2005, 79 (11) :6690-6702
[9]   Membrane fusion tropism and heterotypic functional activities of the Nipah virus and Hendra virus envelope glycoproteins [J].
Bossart, KN ;
Wang, LF ;
Flora, MN ;
Chua, KB ;
Lam, SK ;
Eaton, BT ;
Broder, CC .
JOURNAL OF VIROLOGY, 2002, 76 (22) :11186-11198
[10]  
BOSSART KN, 2007, VIRAL ENTRY HOST CEL, P1