A note on the equivariant Dold-Thom theorem

被引:23
作者
dos Santos, PF [1 ]
机构
[1] Univ Lisbon, Dept Math, Inst Super Tecn, P-1049001 Lisbon, Portugal
关键词
D O I
10.1016/S0022-4049(03)00029-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note we prove a version of the classical Dold-Thorn theorem for the RO(G)-graded equivariant homology functors H-*(G) (-; M), where G is a finite group, M is a discrete Z[G]-module, and M is the Mackey functor associated to M. In the case where M=Z with the trivial G-action, our result says that, for a G-CW-complex X, and for a finite dimensional G-representation 1; there is a natural isomorphism [S-V, F-0(X)](G) congruent to H-V(G) (X; Z), where F-0(X) denotes the free abelian group on X. (C) 2003 Elsevier B.V. All tights reserved.
引用
收藏
页码:299 / 312
页数:14
相关论文
共 12 条
[1]   Algebraic cycles on real varieties and Z/2-equivariant homotopy theory [J].
dos Santos, PF .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2003, 86 :513-544
[2]  
FRIEDLANDER EM, 1991, COMPOS MATH, V77, P55
[3]  
Goerss P. G., 1999, Simplicial Homotopy Theory, V174
[4]   THE EQUIVARIANT HUREWICZ MAP [J].
LEWIS, LG .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 329 (02) :433-472
[5]  
Lima P, 1997, MATH Z, V224, P567, DOI 10.1007/PL00004297
[6]  
LIMAFILHO P, 1992, COMPOS MATH, V84, P1
[7]  
May J.P., 1996, CBMS, V91
[8]   CLASSIFYING SPACES AND INFINITE SYMMETRIC PRODUCTS [J].
MCCORD, MC .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 146 :273-&
[9]  
tom Dieck T., 1987, De Gruyter Studies in Mathematics, V8
[10]  
[No title captured]