机构:
City Univ London, Dept Math, Northampton Sq, London EC1V 0HB, EnglandTU Kaiserslautern, Fachbereich Math, Postfach 3049, D-67653 Kaiserslautern, Germany
Kessar, Radha
[2
]
机构:
[1] TU Kaiserslautern, Fachbereich Math, Postfach 3049, D-67653 Kaiserslautern, Germany
[2] City Univ London, Dept Math, Northampton Sq, London EC1V 0HB, England
来源:
REPRESENTATION THEORY
|
2019年
/
23卷
基金:
美国国家科学基金会;
关键词:
REDUCTIVE GROUPS;
D O I:
10.1090/ert/530
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Let l be a prime number. We show that the Morita Frobenius number of an l-block of a quasi-simple finite group is at most 4 and that the strong Frobenius number is at most 4 vertical bar D vertical bar(2!), where D denotes a defect group of the block. We deduce that a basic algebra of any block of the group algebra of a quasi-simple finite group over an algebraically closed field of characteristic l is defined over a field with l(a) elements for some a <= 4. We derive consequences for Donovan's conjecture. In particular, we show that Donovan's conjecture holds for l-blocks of special linear groups.
机构:
Univ Tokyo, Grad Sch Math Sci, 3-8-1 Komaba,Meguro Ku, Tokyo 1538914, JapanUniv Tokyo, Grad Sch Math Sci, 3-8-1 Komaba,Meguro Ku, Tokyo 1538914, Japan
Imai, Naoki
Tsushima, Takahiro
论文数: 0引用数: 0
h-index: 0
机构:
Chiba Univ, Fac Sci, Dept Math & Informat, 1-33 Yayoi-cho,Inage, Chiba 2638522, JapanUniv Tokyo, Grad Sch Math Sci, 3-8-1 Komaba,Meguro Ku, Tokyo 1538914, Japan
机构:
Indiana Univ, Dept Math, 831 3rd St, Bloomington, IN 47405 USA
Univ Calif San Diego, 9500 Gilman Dr, La Jolla, CA 92093 USAIndiana Univ, Dept Math, 831 3rd St, Bloomington, IN 47405 USA
Lahiri, Aranya
Ray, Jishnu
论文数: 0引用数: 0
h-index: 0
机构:
Harish Chandra Res Inst, CI Homi Bhabha Natl Inst, Dept Math, Chhatnag Rd, Prayagraj 211019, IndiaIndiana Univ, Dept Math, 831 3rd St, Bloomington, IN 47405 USA
Ray, Jishnu
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES,
2025,