A C1 - C0 conforming virtual element discretization for the transmission eigenvalue problem

被引:0
作者
Mora, David [1 ,2 ]
Velasquez, Ivan [3 ]
机构
[1] Univ Bio Bio, Dept Matemat, GIMNAP, Concepcion, Chile
[2] Univ Concepcion, Cl2MA, Concepcion, Chile
[3] Univ Sinu Elias Bechara Zainum, Dept Ciencias Basicas, Monteria, Colombia
关键词
Transmission eigenvalues; Spectral problem; Virtual element method; Polygonal meshes; Error estimates; APPROXIMATION; EQUATION;
D O I
10.1007/s40687-021-00291-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this study, we present and analyze a virtual element discretization for a nonselfadjoint fourth-order eigenvalue problem derived from the transmission eigenvalue problem. Using suitable projection operators, the sesquilinear forms are discretized by only using the proposed degrees of freedom associated with the virtual spaces. Under standard assumptions on the polygonal meshes, we show that the resulting scheme provides a correct approximation of the spectrum and prove an optimal-order error estimate for the eigenfunctions and a double order for the eigenvalues. Finally, we present some numerical experiments illustrating the behavior of the virtual scheme on different families of meshes.
引用
收藏
页数:21
相关论文
共 47 条
[1]   Equivalent projectors for virtual element methods [J].
Ahmad, B. ;
Alsaedi, A. ;
Brezzi, F. ;
Marini, L. D. ;
Russo, A. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (03) :376-391
[2]   The fully nonconforming virtual element method for biharmonic problems [J].
Antonietti, P. F. ;
Manzini, G. ;
Verani, M. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2018, 28 (02) :387-407
[3]   A C1 VIRTUAL ELEMENT METHOD FOR THE CAHN-HILLIARD EQUATION WITH POLYGONAL MESHES [J].
Antonietti, P. F. ;
Da Veiga, L. Beirao ;
Scacchi, S. ;
Verani, M. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (01) :34-56
[4]  
Babuska I., 1991, HDB NUMERICAL ANAL, V2, P641
[5]   The Stokes Complex for Virtual Elements with Application to Navier-Stokes Flows [J].
Beirao da Veiga, L. ;
Mora, D. ;
Vacca, G. .
JOURNAL OF SCIENTIFIC COMPUTING, 2019, 81 (02) :990-1018
[6]   VIRTUAL ELEMENTS FOR A SHEAR-DEFLECTION FORMULATION OF REISSNER-MINDLIN PLATES [J].
Beirao Da Veiga, L. ;
Mora, D. ;
Rivera, G. .
MATHEMATICS OF COMPUTATION, 2019, 88 (315) :149-178
[7]   A virtual element method for the acoustic vibration problem [J].
Beirao da Veiga, Lourenco ;
Mora, David ;
Rivera, Gonzalo ;
Rodriguez, Rodolfo .
NUMERISCHE MATHEMATIK, 2017, 136 (03) :725-763
[8]  
Blum H., 1980, MATH METHOD APPL SCI, V2, P556, DOI DOI 10.1002/MMA.1670020416
[9]   Approximation of PDE eigenvalue problems involving parameter dependent matrices [J].
Boffi, Daniele ;
Gardini, Francesca ;
Gastaldi, Lucia .
CALCOLO, 2020, 57 (04)
[10]  
Brenner SC., 2008, The Mathematical Theory of Finite Element Methods, V3, DOI [10.1007/978-0-387-75934-0, DOI 10.1007/978-0-387-75934-0]