Digital adaptive control of space robot manipulators using transpose of generalized Jacobian matrix

被引:0
作者
Taira, Y [1 ]
Sagara, S [1 ]
Katoh, R [1 ]
机构
[1] Kyushu Inst Technol, Dept Control Engn, Kitakyushu, Fukuoka 8048550, Japan
来源
2000 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2000), VOLS 1-3, PROCEEDINGS | 2000年
关键词
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We have proposed a digital control method of space robot manipulators using the transpose of Generalized Jacobian Matrix. The trajectory of the end-effector, however, is generally curved, because a desired trajectory is not defined in the control method. Furthermore, the method is based on the supposition that all physical parameters of the robot manipulator are known; therefore, if the end-effector captures an unknown mass object, the physical parameters are changed and the control performance gets worse. In this paper, setting a desired trajectory and parameter identification are applied to the control method so as to overcome the draw-backs;. Computer simulation, where a 3 DOF planar manipulator mounted on a free-floating robot base is selected, is performed. Simulation result demonstrates the effectiveness of the combination of setting the desired trajectory and parameter identification.
引用
收藏
页码:1553 / 1558
页数:6
相关论文
共 50 条
[31]   Cooperative manipulation of a floating object by some space robots with joint velocity controllers: application of a tracking control method using the transpose of the generalized Jacobian matrix [J].
Sagara, Shinichi ;
Taira, Yuichiro .
ARTIFICIAL LIFE AND ROBOTICS, 2009, 14 (03) :392-396
[32]   Discrete Data-Driven Control of Redundant Manipulators With Adaptive Jacobian Matrix [J].
Liu, Mei ;
Hu, Yafei ;
Jin, Long .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2024, 71 (10) :12685-12695
[33]   A reaction-null/Jacobian transpose control strategy with gravity gradient compensation for on-orbit space manipulators [J].
Pisculli, A. ;
Felicetti, L. ;
Gasbarri, P. ;
Palmerini, G. B. ;
Sabatini, M. .
AEROSPACE SCIENCE AND TECHNOLOGY, 2014, 38 :30-40
[34]   Discrete Data-Driven Control of Redundant Manipulators with Adaptive Jacobian Matrix [J].
Liu, Mei ;
Hu, Yafei ;
Jin, Long .
IEEE Transactions on Industrial Electronics, 2024, 71 (10) :12685-12695
[35]   ADAPTIVE GENERALIZED MODEL-BASED CONTROL OF ROBOT MANIPULATORS [J].
PANDIAN, SR ;
HANMANDLU, M .
INTERNATIONAL JOURNAL OF CONTROL, 1993, 58 (04) :835-852
[36]   Bilateral Control in Delta Robot by using Jacobian matrix [J].
Stapornchaisit, Sorawit ;
Mitsantisuk, Chowarit ;
Chayopitak, Nattapon ;
Koike, Yasuharu .
2015 6TH INTERNATIONAL CONFERENCE OF INFORMATION AND COMMUNICATION TECHNOLOGY FOR EMBEDDED SYSTEMS (IC-ICTES), 2015,
[37]   Vision based Neural Network Control of Robot Manipulators with Unknown Sensory Jacobian Matrix [J].
Lyu, Shangke ;
Cheah, Chien Chern .
2018 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM), 2018, :1222-1227
[38]   Tracking Control of Robot Manipulators with Unknown Models: A Jacobian-Matrix-Adaption Method [J].
Chen, Dechao ;
Zhang, Yunong ;
Li, Shuai .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2018, 14 (07) :3044-3053
[39]   Inverse Jacobian Adaptive Tracking Control of Robot Manipulators with Kinematic, Dynamic, and Actuator Uncertainties [J].
Zhou, Bing ;
Yang, Liang ;
Wang, Chengdong ;
Chen, Yong ;
Chen, Kairui .
COMPLEXITY, 2020, 2020
[40]   DIGITAL IMPLEMENTATION OF ADAPTIVE-CONTROL ALGORITHMS FOR ROBOT MANIPULATORS [J].
MORANDO, A ;
HOROWITZ, R ;
SADEGH, N .
PROCEEDINGS - 1989 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOL 1-3, 1989, :1656-1662