A Lagrangian particle method for reaction-diffusion systems on deforming surfaces

被引:34
作者
Bergdorf, Michael [1 ]
Sbalzarini, Ivo F. [2 ,3 ]
Koumoutsakos, Petros [1 ]
机构
[1] ETH, Dept Computat Sci, Zurich, Switzerland
[2] ETH, Inst Theoret Comp Sci, Zurich, Switzerland
[3] ETH, Swiss Inst Bioinformat, Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
LEVEL SET METHOD; PARTIAL-DIFFERENTIAL-EQUATIONS; TUMOR-GROWTH; PATTERN-FORMATION; MORPHOGENESIS; SIMULATIONS; INTERFACE; TRANSPORT; FLOW;
D O I
10.1007/s00285-009-0315-2
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Reaction-diffusion processes on complex deforming surfaces are fundamental to a number of biological processes ranging from embryonic development to cancer tumor growth and angiogenesis. The simulation of these processes using continuum reaction-diffusion models requires computational methods capable of accurately tracking the geometric deformations and discretizing on them the governing equations. We employ a Lagrangian level-set formulation to capture the deformation of the geometry and use an embedding formulation and an adaptive particle method to discretize both the level-set equations and the corresponding reaction-diffusion. We validate the proposed method and discuss its advantages and drawbacks through simulations of reaction-diffusion equations on complex and deforming geometries.
引用
收藏
页码:649 / 663
页数:15
相关论文
共 33 条
[1]   Transport and diffusion of material quantities on propagating interfaces via level set methods [J].
Adalsteinsson, D ;
Sethian, JA .
JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 185 (01) :271-288
[2]  
[Anonymous], 2002, INTERDISCIPLINARY AP
[3]   A mechanism for morphogen-controlled domain growth [J].
Baker, R. E. ;
Maini, P. K. .
JOURNAL OF MATHEMATICAL BIOLOGY, 2007, 54 (05) :597-622
[4]   A finite element method for surface diffusion:: the parametric case [J].
Bänsch, E ;
Morin, P ;
Nochetto, RH .
JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 203 (01) :321-343
[5]   A Lagrangian particle-wavelet method [J].
Bergdorf, Michael ;
Koumoutsakos, Petros .
MULTISCALE MODELING & SIMULATION, 2006, 5 (03) :980-995
[6]   Variational problems and partial differential equations on implicit surfaces [J].
Bertalmío, M ;
Cheng, LT ;
Osher, S ;
Sapiro, G .
JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 174 (02) :759-780
[7]   Spatio-temporal pattern formation on spherical surfaces: numerical simulation and application to solid tumour growth [J].
Chaplain, MAJ ;
Ganesh, M ;
Graham, IG .
JOURNAL OF MATHEMATICAL BIOLOGY, 2001, 42 (05) :387-423
[8]   A simple level set method for solving Stefan problems [J].
Chen, S ;
Merriman, B ;
Osher, S ;
Smereka, P .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 135 (01) :8-29
[9]   A hybrid particle level set method for improved interface capturing [J].
Enright, D ;
Fedkiw, R ;
Ferziger, J ;
Mitchell, I .
JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 183 (01) :83-116
[10]   Complex morphogenesis of surfaces: theory and experiment on coupling of reaction-diffusion patterning to growth [J].
Harrison, LG ;
Wehner, S ;
Holloway, DM .
FARADAY DISCUSSIONS, 2001, 120 :277-294