Partial sums of hyper-Bessel function with applications

被引:3
作者
Aktas, Ibrahim [1 ]
机构
[1] Karamanoglu Mehmetbey Univ, Kamil Ozdag Sci Fac, Dept Math, Yunus Emre Campus, TR-70100 Karaman, Turkey
来源
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS | 2020年 / 49卷 / 01期
关键词
analytic function; univalent function; partial sum; trigonometric function; hyper-Bessel function;
D O I
10.15672/hujms.470930
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main purpose of the presented paper is to determine some lower bounds for the quotient of the normalized hyper-Bessel function and its partial sum, as well as for the quotient of the derivative of normalized hyper-Bessel function and its partial sum. In addition, some applications related to the obtained results are given.
引用
收藏
页码:380 / 388
页数:9
相关论文
共 50 条
[1]   On the zeros of the hyper-Bessel function [J].
Chaggara, H. ;
Ben Romdhane, N. .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2015, 26 (02) :96-101
[2]   CERTAIN GEOMETRIC PROPERTIES OF A NORMALIZED HYPER-BESSEL FUNCTION [J].
Aktas, Ibrahim .
FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2020, 35 (01) :179-186
[3]   ON SOME PROPERTIES OF HYPER-BESSEL AND RELATED FUNCTIONS [J].
Aktas, I .
TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (01) :30-37
[4]   A family of hyper-Bessel functions and convergent series in them [J].
Jordanka Paneva-Konovska .
Fractional Calculus and Applied Analysis, 2014, 17 :1001-1015
[5]   A family of hyper-Bessel functions and convergent series in them [J].
Paneva-Konovska, Jordanka .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2014, 17 (04) :1001-1015
[6]   APPLICATION OF q-SHEHU TRANSFORM ON q-FRACTIONAL KINETIC EQUATION INVOLVING THE GENERALIZED HYPER-BESSEL FUNCTION [J].
Abujarad, Eman S. ;
Jarad, Fahd ;
Abujarad, Mohammed H. ;
Baleanu, Dumitru .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (05)
[7]   ON PARTIAL SUMS OF NORMALIZED q-BESSEL FUNCTIONS [J].
Artas, Ibrahim ;
Orhan, Halit .
COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 33 (02) :535-547
[8]   Partial sums of the Rabotnov function [J].
Kazimoglu, Sercan ;
Deniz, Erhan .
ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2022, 14 (02) :250-261
[9]   PARTIAL SUMS OF MITTAG-LEFFLER FUNCTION [J].
Bansal, Deepak ;
Orhan, Halit .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2018, 12 (02) :423-431
[10]   Relatively Prime Sets, Divisor Sums, and Partial Sums [J].
Pongsriiam, Prapanpong .
JOURNAL OF INTEGER SEQUENCES, 2013, 16 (09)