Partial sums of hyper-Bessel function with applications

被引:3
|
作者
Aktas, Ibrahim [1 ]
机构
[1] Karamanoglu Mehmetbey Univ, Kamil Ozdag Sci Fac, Dept Math, Yunus Emre Campus, TR-70100 Karaman, Turkey
来源
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS | 2020年 / 49卷 / 01期
关键词
analytic function; univalent function; partial sum; trigonometric function; hyper-Bessel function;
D O I
10.15672/hujms.470930
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main purpose of the presented paper is to determine some lower bounds for the quotient of the normalized hyper-Bessel function and its partial sum, as well as for the quotient of the derivative of normalized hyper-Bessel function and its partial sum. In addition, some applications related to the obtained results are given.
引用
收藏
页码:380 / 388
页数:9
相关论文
共 50 条
  • [1] On the zeros of the hyper-Bessel function
    Chaggara, H.
    Ben Romdhane, N.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2015, 26 (02) : 96 - 101
  • [2] CERTAIN GEOMETRIC PROPERTIES OF A NORMALIZED HYPER-BESSEL FUNCTION
    Aktas, Ibrahim
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2020, 35 (01): : 179 - 186
  • [3] CERTAIN INTEGRATION FORMULAE FOR THE GENERALIZED k-BESSEL FUNCTIONS AND DELEURE HYPER-BESSEL FUNCTION
    Kim, Yongsup
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 34 (02): : 523 - 532
  • [4] Geometric and monotonic properties of hyper-Bessel functions
    Aktas, Ibrahim
    Baricz, Arpad
    Singh, Sanjeev
    RAMANUJAN JOURNAL, 2020, 51 (02): : 275 - 295
  • [5] ON SOME PROPERTIES OF HYPER-BESSEL AND RELATED FUNCTIONS
    Aktas, I
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (01): : 30 - 37
  • [6] On Geometric Properties of Normalized Hyper-Bessel Functions
    Ahmad, Khurshid
    Mustafa, Saima
    Din, Muhey U.
    Rehman, Shafiq Ur
    Raza, Mohsan
    Arif, Muhammad
    MATHEMATICS, 2019, 7 (04)
  • [7] Geometric and monotonic properties of hyper-Bessel functions
    İbrahim Aktaş
    Árpád Baricz
    Sanjeev Singh
    The Ramanujan Journal, 2020, 51 : 275 - 295
  • [8] RESULTS OLD AND NEW ON THE HYPER-BESSEL EQUATION
    PARIS, RB
    WOOD, AD
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1987, 106 : 259 - 265
  • [9] A family of hyper-Bessel functions and convergent series in them
    Jordanka Paneva-Konovska
    Fractional Calculus and Applied Analysis, 2014, 17 : 1001 - 1015
  • [10] A family of hyper-Bessel functions and convergent series in them
    Paneva-Konovska, Jordanka
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2014, 17 (04) : 1001 - 1015