Evaluation of Risk Prediction Models of Atrial Fibrillation (from the Multi-Ethnic Study of Atherosclerosis [MESA])

被引:24
作者
Bundy, Joshua D. [1 ,2 ]
Heckbert, Susan R. [3 ]
Chen, Lin Y. [4 ]
Lloyd-Jones, Donald M. [2 ]
Greenland, Philip [2 ]
机构
[1] Tulane Univ, Sch Publ Hlth & Trop Med, Dept Epidemiol, New Orleans, LA 70118 USA
[2] Northwestern Univ, Dept Prevent Med, Feinberg Sch Med, Chicago, IL 60611 USA
[3] Univ Washington, Dept Epidemiol, Seattle, WA 98195 USA
[4] Univ Minnesota, Sch Med, Dept Med, Cardiovasc Div, Minneapolis, MN 55455 USA
关键词
NATRIURETIC PEPTIDE; PERFORMANCE; BIOMARKERS; CALCIUM; EVENTS; STROKE; SCORE;
D O I
10.1016/j.amjcard.2019.09.032
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Atrial fibrillation (AF) is prevalent and strongly associated with higher cardiovascular disease (CVD) risk. Machine learning is increasingly used to identify novel predictors of CVD risk, but prediction improvements beyond established risk scores are uncertain. We evaluated improvements in predicting 5-year AF risk when adding novel candidate variables identified by machine learning to the CHARGE-AF Enriched score, which includes age, race/ethnicity, height, weight, systolic and diastolic blood pressure, current smoking, use of antihypertensive medication, diabetes, and NT-proBNP. We included 3,534 participants (mean age, 61.3 years; 52.0% female) with complete data from the prospective MultiEthnic Study of Atherosclerosis. Incident AF was defined based on study electrocardiograms and hospital discharge diagnosis ICD-9 codes, supplemented by Medicare claims. Prediction performance was evaluated using Cox regression and a parsimonious model was selected using LASSO. Within 5 years of baseline, 124 participants had incident AF. Compared with the CHARGE-AF Enriched model (c-statistic, 0.804), variables identified by machine learning, including biomarkers, cardiac magnetic resonance imaging variables, electrocardiogram variables, and subclinical CVD variables, did not significantly improve prediction. A 23-item score derived by machine learning achieved a c-statistic of 0.806, whereas a parsimonious model including the clinical risk factors age, weight, current smoking, NT-proBNP, coronary artery calcium score, and cardiac troponin-T achieved a c-statistic of 0.802. This analysis confirms that the CHARGE-AF Enriched model and a parsimonious 6-item model performed similarly to a more extensive model derived by machine learning. In conclusion, these simple models remain the gold standard for risk prediction of AF, although addition of the coronary artery calcium score should be considered. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:55 / 62
页数:8
相关论文
共 31 条
[1]   Prediction of Atrial Fibrillation in a Racially Diverse Cohort: The Multi-Ethnic Study of Atherosclerosis (MESA) [J].
Alonso, Alvaro ;
Roetker, Nicholas S. ;
Soliman, Elsayed Z. ;
Chen, Lin Y. ;
Greenland, Philip ;
Heckbert, Susan R. .
JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2016, 5 (02)
[2]   Simple Risk Model Predicts Incidence of Atrial Fibrillation in a Racially and Geographically Diverse Population: the CHARGE-AF Consortium [J].
Alonso, Alvaro ;
Krijthe, Bouwe P. ;
Aspelund, Thor ;
Stepas, Katherine A. ;
Pencina, Michael J. ;
Moser, Carlee B. ;
Sinner, Moritz F. ;
Sotoodehnia, Nona ;
Fontes, Joao D. ;
Janssens, A. Cecile J. W. ;
Kronmal, Richard A. ;
Magnani, Jared W. ;
Witteman, Jacqueline C. ;
Chamberlain, Alanna M. ;
Lubitz, Steven A. ;
Schnabel, Renate B. ;
Agarwal, Sunil K. ;
McManus, David D. ;
Ellinor, Patrick T. ;
Larson, Martin G. ;
Burke, Gregory L. ;
Launer, Lenore J. ;
Hofman, Albert ;
Levy, Daniel ;
Gottdiener, John S. ;
Kaeaeb, Stefan ;
Couper, David ;
Harris, Tamara B. ;
Soliman, Elsayed Z. ;
Stricker, Bruno H. C. ;
Gudnason, Vilmundur ;
Heckbert, Susan R. ;
Benjamin, Emelia J. .
JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2013, 2 (02) :e000102
[3]   Cardiovascular Event Prediction by Machine Learning The Multi-Ethnic Study of Atherosclerosis [J].
Ambale-Venkatesh, Bharath ;
Yang, Xiaoying ;
Wu, Colin O. ;
Liu, Kiang ;
Hundley, W. Gregory ;
McClelland, Robyn ;
Gomes, Antoinette S. ;
Folsom, Aaron R. ;
Shea, Steven ;
Guallar, Eliseo ;
Bluemke, David A. ;
Lima, Joao A. C. .
CIRCULATION RESEARCH, 2017, 121 (09) :1092-+
[4]  
Benjamin EJ, 2019, CIRCULATION, V139, pE56, DOI [10.1161/CIR.0000000000000746, 10.1161/CIR.0000000000000659]
[5]   Multi-ethnic study of atherosclerosis: Objectives and design [J].
Bild, DE ;
Bluemke, DA ;
Burke, GL ;
Detrano, R ;
Roux, AVD ;
Folsom, AR ;
Greenland, P ;
Jacobs, DR ;
Kronmal, R ;
Liu, K ;
Nelson, JC ;
O'Leary, D ;
Saad, MF ;
Shea, S ;
Szklo, M ;
Tracy, RP .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 2002, 156 (09) :871-881
[6]   A Clinical Risk Score for Atrial Fibrillation in a Biracial Prospective Cohort (from the Atherosclerosis Risk In Communities [ARIC] Study) [J].
Chamberlain, Alanna M. ;
Agarwal, Sunil K. ;
Folsom, Aaron R. ;
Soliman, Elsayed Z. ;
Chambless, Lloyd E. ;
Crow, Richard ;
Ambrose, Marietta ;
Alonso, Alvaro .
AMERICAN JOURNAL OF CARDIOLOGY, 2011, 107 (01) :85-91
[7]   Tests of calibration and goodness-of-fit in the survival setting [J].
Demler, Olga V. ;
Paynter, Nina P. ;
Cook, Nancy R. .
STATISTICS IN MEDICINE, 2015, 34 (10) :1659-1680
[8]   Machine Learning in Medicine [J].
Deo, Rahul C. .
CIRCULATION, 2015, 132 (20) :1920-1930
[9]   Coronary calcium as a predictor of coronary events in four racial or ethnic groups [J].
Detrano, Robert ;
Guerci, Alan D. ;
Carr, J. Jeffrey ;
Bild, Diane E. ;
Burke, Gregory ;
Folsom, Aaron R. ;
Liu, Kiang ;
Shea, Steven ;
Szklo, Moyses ;
Bluemke, David A. ;
O'Leary, Daniel H. ;
Tracy, Russell ;
Watson, Karol ;
Wong, Nathan D. ;
Kronmal, Richard A. .
NEW ENGLAND JOURNAL OF MEDICINE, 2008, 358 (13) :1336-1345
[10]   Prevalence of diagnosed atrial fibrillation in adults - National implications for rhythm management and stroke prevention: the AnTicoagulation and Risk Factors in Atrial Fibrillation (ATRIA) study [J].
Go, AS ;
Hylek, EM ;
Phillips, KA ;
Chang, YC ;
Henault, LE ;
Selby, JV ;
Singer, DE .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2001, 285 (18) :2370-2375