Synchronization of homoclinic chaos

被引:118
作者
Allaria, E
Arecchi, FT
Di Garbo, A
Meucci, R
机构
[1] Ist Nazl Ottica Applicata, I-50125 Florence, Italy
[2] Univ Florence, Dept Phys, Florence, Italy
[3] CNR, Ist Biofis, Pisa, Italy
关键词
D O I
10.1103/PhysRevLett.86.791
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Homoclinic chaos is characterized by regular geometric orbits occurring at erratic times. Phase synchronization at the average repetition frequency is achieved by a tiny periodic modulation of a control parameter. An experiment has been carried on a CO2 laser with feedback. set in a parameter range where homoclinic chaos occurs. Any offset of the modulation frequency From the average induces phase slips over long times. Perfect phase synchronization is recovered by slow changes of the modulation frequency based upon the sign and amplitude of the slip rate. Satellite synchronization regimes are also realized, with variable numbers of homoclinic spikes per period of the modulation.
引用
收藏
页码:791 / 794
页数:4
相关论文
共 50 条
[31]   Chaos synchronization [J].
Parlitz, U ;
Junge, L ;
Kocarev, L .
NEW DIRECTIONS IN NONLINEAR AND OBSERVER DESIGN, 1999, 244 :511-525
[32]   CHAOS SYNCHRONIZATION [J].
Umut, Omur ;
Poria, Swarup ;
Patra, Rajat .
JOURNAL OF DYNAMICAL SYSTEMS AND GEOMETRIC THEORIES, 2007, 5 (01) :13-18
[33]   SYNCHRONIZATION AND CHAOS [J].
TANG, YS ;
MEES, AI ;
CHUA, LO .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1983, 30 (09) :620-626
[34]   Noise-enhanced synchronization of homoclinic chaos in a CO2 laser -: art. no. 015205 [J].
Zhou, CS ;
Kurths, J ;
Allaria, E ;
Boccaletti, S ;
Meucci, R ;
Arecchi, FT .
PHYSICAL REVIEW E, 2003, 67 (01) :4
[35]   Perturbed Li-Yorke homoclinic chaos [J].
Akhmet, Marat ;
Feckan, Michal ;
Fen, Mehmet Onur ;
Kashkynbayev, Ardak .
ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2018, (75) :1-18
[36]   HOMOCLINIC ORBITS AND CHAOS IN THE GENERALIZED LORENZ SYSTEM [J].
Yang, Ting .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2020, 25 (03) :1097-1108
[37]   Controlling transient dynamics to communicate with homoclinic chaos [J].
Baptista, MS ;
Boccaletti, S ;
Allaria, E ;
Meucci, R ;
Arecchi, FT .
CHAOS, 2003, 13 (03) :921-925
[38]   Homoclinic bifurcation and chaos control in MEMS resonators [J].
Siewe, M. Siewe ;
Hegazy, Usama H. .
APPLIED MATHEMATICAL MODELLING, 2011, 35 (12) :5533-5552
[39]   NUMERICAL CHAOS, ROUNDOFF ERRORS, AND HOMOCLINIC MANIFOLDS [J].
ABLOWITZ, MJ ;
SCHOBER, C ;
HERBST, BM .
PHYSICAL REVIEW LETTERS, 1993, 71 (17) :2683-2686
[40]   HOMOCLINIC CHAOS IN A LASER CONTAINING A SATURABLE ABSORBER [J].
LEFRANC, M ;
HENNEQUIN, D ;
DANGOISSE, D .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1991, 8 (02) :239-249