Synchronization of homoclinic chaos

被引:117
|
作者
Allaria, E
Arecchi, FT
Di Garbo, A
Meucci, R
机构
[1] Ist Nazl Ottica Applicata, I-50125 Florence, Italy
[2] Univ Florence, Dept Phys, Florence, Italy
[3] CNR, Ist Biofis, Pisa, Italy
关键词
D O I
10.1103/PhysRevLett.86.791
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Homoclinic chaos is characterized by regular geometric orbits occurring at erratic times. Phase synchronization at the average repetition frequency is achieved by a tiny periodic modulation of a control parameter. An experiment has been carried on a CO2 laser with feedback. set in a parameter range where homoclinic chaos occurs. Any offset of the modulation frequency From the average induces phase slips over long times. Perfect phase synchronization is recovered by slow changes of the modulation frequency based upon the sign and amplitude of the slip rate. Satellite synchronization regimes are also realized, with variable numbers of homoclinic spikes per period of the modulation.
引用
收藏
页码:791 / 794
页数:4
相关论文
共 50 条
  • [1] Control and synchronization of homoclinic chaos: Implicationsfor neurodynamics
    Arecchi, FT
    IUTAM SYMPOSIUM ON CHAOTIC DYNAMICS AND CONTROL OF SYSTEMS AND PROCESSES IN MECHANICS, 2005, 122 : 469 - 480
  • [2] Delayed self-synchronization in homoclinic chaos
    Arecchi, FT
    Meucci, R
    Allaria, E
    Di Garbo, A
    Tsimring, LS
    PHYSICAL REVIEW E, 2002, 65 (04):
  • [3] Control and synchronization of homoclinic chaos and its implication for neurodynamics
    Arecchi, FT
    OPTICS FOR THE QUALITY OF LIFE, PTS 1 AND 2, 2003, 4829 : 1100 - 1101
  • [4] Homoclinic chaos in a laser: synchronization and its implications in biological systems
    Arecchi, FT
    Meucci, R
    Di Garbo, A
    Allaria, E
    OPTICS AND LASERS IN ENGINEERING, 2003, 39 (03) : 293 - 304
  • [5] Evidence of noise induced synchronization and coherence resonance in homoclinic chaos
    Meucci, R
    Zhou, CS
    Allaria, E
    Arecchi, FT
    Boccaletti, S
    Kurths, J
    EXPERIMENTAL CHAOS, 2003, 676 : 71 - 77
  • [6] Predicting phase synchronization for homoclinic chaos in a CO2 laser
    Tokuda, I
    Kurths, J
    Allaria, E
    Meucci, R
    Boccaletti, S
    Arecchit, FT
    EXPERIMENTAL CHAOS, 2004, 742 : 345 - 350
  • [7] Nonhyperbolic homoclinic chaos
    Cicogna, G
    Santoprete, M
    PHYSICS LETTERS A, 1999, 256 (01) : 25 - 30
  • [8] Numerical approximation of homoclinic chaos
    W.-J. Beyn
    J.-M. Kleinkauf
    Numerical Algorithms, 1997, 14 : 25 - 53
  • [9] Homoclinic chaos in coupled SQUIDs
    Agaoglou, M.
    Rothos, V. M.
    Susanto, H.
    CHAOS SOLITONS & FRACTALS, 2017, 99 : 133 - 140
  • [10] Homoclinic chaos in the Rossler model
    Malykh, Semyon
    Bakhanova, Yuliya
    Kazakov, Alexey
    Pusuluri, Krishna
    Shilnikov, Andrey
    CHAOS, 2020, 30 (11)