Cavity-enhanced Raman microscopy of individual carbon nanotubes

被引:60
作者
Huemmer, Thomas [1 ,2 ]
Noe, Jonathan [1 ,3 ]
Hofmann, Matthias S. [1 ,3 ]
Haensch, Theodor W. [1 ,2 ]
Hoegele, Alexander [1 ,3 ]
Hunger, David [1 ,2 ]
机构
[1] Univ Munich, Fak Phys, Schellingstr 4, D-80799 Munich, Germany
[2] Max Planck Inst Quantum Opt, Hans Kopfermann Str 1, D-85748 Garching, Germany
[3] Univ Munich, Ctr NanoSci CeNS, Schellingstr 4, D-80799 Munich, Germany
基金
欧洲研究理事会;
关键词
SCATTERING; MICROCAVITIES; SPECTROSCOPY; EFFICIENCY;
D O I
10.1038/ncomms12155
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Raman spectroscopy reveals chemically specific information and provides label-free insight into the molecular world. However, the signals are intrinsically weak and call for enhancement techniques. Here, we demonstrate Purcell enhancement of Raman scattering in a tunable high-finesse microcavity, and utilize it for molecular diagnostics by combined Raman and absorption imaging. Studying individual single-wall carbon nanotubes, we identify crucial structural parameters such as nanotube radius, electronic structure and extinction cross-section. We observe a 320-times enhanced Raman scattering spectral density and an effective Purcell factor of 6.2, together with a collection efficiency of 60%. Potential for significantly higher enhancement, quantitative signals, inherent spectral filtering and absence of intrinsic background in cavity-vacuum stimulated Raman scattering render the technique a promising tool for molecular imaging. Furthermore, cavity-enhanced Raman transitions involving localized excitons could potentially be used for gaining quantum control over nanomechanical motion and open a route for molecular cavity optomechanics.
引用
收藏
页数:7
相关论文
共 38 条
[31]   Cavity-enhanced optical detection of carbon nanotube Brownian motion [J].
Stapfner, S. ;
Ost, L. ;
Hunger, D. ;
Reichel, J. ;
Favero, I. ;
Weig, E. M. .
APPLIED PHYSICS LETTERS, 2013, 102 (15)
[32]   Cavity-enhanced Raman scattering of single-walled carbon nanotubes [J].
Sumikura, Hisashi ;
Kuramochi, Eiichi ;
Taniyama, Hideaki ;
Notomi, Masaya .
APPLIED PHYSICS LETTERS, 2013, 102 (23)
[33]   Cavity enhanced droplet spectroscopy: Principles, perspectives and prospects [J].
Symes, R ;
Sayer, RM ;
Reid, JP .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2004, 6 (03) :474-487
[34]  
Tanji-Suzuki H., 2011, INTERACTION ATOMIC E, V60
[35]   Raman scattering in strongly coupled organic semiconductor microcavities [J].
Tartakovskii, AI ;
Emam-Ismail, M ;
Lidzey, DG ;
Skolnick, MS ;
Bradley, DDC ;
Walker, S ;
Agranovich, VM .
PHYSICAL REVIEW B, 2001, 63 (12)
[36]   A scanning microcavity for in situ control of single-molecule emission [J].
Toninelli, C. ;
Delley, Y. ;
Stoeferle, T. ;
Renn, A. ;
Goetzinger, S. ;
Sandoghdar, V. .
APPLIED PHYSICS LETTERS, 2010, 97 (02)
[37]   Optical microcavities [J].
Vahala, KJ .
NATURE, 2003, 424 (6950) :839-846
[38]   Exciton-assisted optomechanics with suspended carbon nanotubes [J].
Wilson-Rae, I. ;
Galland, C. ;
Zwerger, W. ;
Imamoglu, A. .
NEW JOURNAL OF PHYSICS, 2012, 14