Cavity-enhanced Raman microscopy of individual carbon nanotubes

被引:60
作者
Huemmer, Thomas [1 ,2 ]
Noe, Jonathan [1 ,3 ]
Hofmann, Matthias S. [1 ,3 ]
Haensch, Theodor W. [1 ,2 ]
Hoegele, Alexander [1 ,3 ]
Hunger, David [1 ,2 ]
机构
[1] Univ Munich, Fak Phys, Schellingstr 4, D-80799 Munich, Germany
[2] Max Planck Inst Quantum Opt, Hans Kopfermann Str 1, D-85748 Garching, Germany
[3] Univ Munich, Ctr NanoSci CeNS, Schellingstr 4, D-80799 Munich, Germany
基金
欧洲研究理事会;
关键词
SCATTERING; MICROCAVITIES; SPECTROSCOPY; EFFICIENCY;
D O I
10.1038/ncomms12155
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Raman spectroscopy reveals chemically specific information and provides label-free insight into the molecular world. However, the signals are intrinsically weak and call for enhancement techniques. Here, we demonstrate Purcell enhancement of Raman scattering in a tunable high-finesse microcavity, and utilize it for molecular diagnostics by combined Raman and absorption imaging. Studying individual single-wall carbon nanotubes, we identify crucial structural parameters such as nanotube radius, electronic structure and extinction cross-section. We observe a 320-times enhanced Raman scattering spectral density and an effective Purcell factor of 6.2, together with a collection efficiency of 60%. Potential for significantly higher enhancement, quantitative signals, inherent spectral filtering and absence of intrinsic background in cavity-vacuum stimulated Raman scattering render the technique a promising tool for molecular imaging. Furthermore, cavity-enhanced Raman transitions involving localized excitons could potentially be used for gaining quantum control over nanomechanical motion and open a route for molecular cavity optomechanics.
引用
收藏
页数:7
相关论文
共 38 条
[21]  
Ma XD, 2015, NAT NANOTECHNOL, V10, P671, DOI [10.1038/NNANO.2015.136, 10.1038/nnano.2015.136]
[22]   A scanning cavity microscope [J].
Mader, Matthias ;
Reichel, Jakob ;
Haensch, Theodor W. ;
Hunger, David .
NATURE COMMUNICATIONS, 2015, 6
[23]   Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters [J].
Miura, R. ;
Imamura, S. ;
Ohta, R. ;
Ishii, A. ;
Liu, X. ;
Shimada, T. ;
Iwamoto, S. ;
Arakawa, Y. ;
Kato, Y. K. .
NATURE COMMUNICATIONS, 2014, 5
[24]  
Moser J, 2014, NAT NANOTECHNOL, V9, P1007, DOI [10.1038/nnano.2014.234, 10.1038/NNANO.2014.234]
[25]   Cavity-enhanced Rayleigh scattering [J].
Motsch, Michael ;
Zeppenfeld, Martin ;
Pinkse, Pepijn W. H. ;
Rempe, Gerhard .
NEW JOURNAL OF PHYSICS, 2010, 12
[26]   Metrological Investigation of the (6,5) Carbon Nanotube Absorption Cross Section [J].
Oudjedi, Laura ;
Parra-Vasquez, A. Nicholas G. ;
Godin, Antoine G. ;
Cognet, Laurent ;
Lounis, Brahim .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2013, 4 (09) :1460-1464
[27]   Purcell-enhanced Raman scattering from atmospheric gases in a high-finesse microcavity [J].
Petrak, Benjamin ;
Djeu, Nicholas ;
Muller, Andreas .
PHYSICAL REVIEW A, 2014, 89 (02)
[28]   Single-Polariton Optomechanics [J].
Restrepo, Juan ;
Ciuti, Cristiano ;
Favero, Ivan .
PHYSICAL REVIEW LETTERS, 2014, 112 (01)
[29]  
Roelli P, 2016, NAT NANOTECHNOL, V11, P164, DOI [10.1038/nnano.2015.264, 10.1038/NNANO.2015.264]
[30]   STIMULATED RAMAN-SCATTERING FROM INDIVIDUAL WATER AND ETHANOL DROPLETS AT MORPHOLOGY-DEPENDENT RESONANCES [J].
SNOW, JB ;
QIAN, SX ;
CHANG, RK .
OPTICS LETTERS, 1985, 10 (01) :37-39