QUANTUM ERROR CORRECTION AND FAULT-TOLERANT QUANTUM COMPUTING

被引:0
作者
Gaitan, Frank [1 ,2 ,3 ]
Li, Ran [2 ,3 ,4 ]
机构
[1] Southern Illinois Univ, Dept Phys, Carbondale, IL 62901 USA
[2] RIKEN, Adv Sci Inst, Inst Phys & Chem Res, Wako, Saitama 3510198, Japan
[3] Japan Sci & Technol Agcy, JST, CREST, Kawaguchi, Saitama 3320012, Japan
[4] Kent State Univ, Dept Phys, North Canton, OH 44720 USA
来源
DECOHERENCE SUPPRESSION IN QUANTUM SYSTEMS 2008 | 2010年 / 3卷
关键词
Quantum Error Correction; Fault-Tolerant Quantum Computing; Accuracy Threshold Theorem; High-Fidelity Universal Quantum Gates; COMPUTATION; CODES; INTERFERENCE;
D O I
10.1142/9789814295840_0002
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We review the theories of quantum error correction, and of fault-tolerant quantum computing, and show how these powerful tools are combined to prove the accuracy threshold theorem for a particular error model. One of the theorem's assumptions is the availability of a universal set of unencoded quantum gates whose error probabilities P-e fall below a value known as the accuracy threshold P-a. For many, P-a similar to 10(-4) has become a rough estimate for the threshold so that quantum gates are anticipated to be approaching the accuracies needed for fault-tolerant quantum computing when P-e < 10(-4). We show how controllable quantum interference effects that arise during a type of non-adiabatic rapid passage can be used to produce a universal set of quantum gates whose error probabilities satisfy P-e < 10(-4). We close with a discussion of the current challenges facing an experimental implementation of this approach to reliable universal quantum computation.
引用
收藏
页码:53 / +
页数:3
相关论文
共 40 条
[1]  
Abragam A., 1961, The principles of nuclear magnetism
[2]  
Aharonov D., 1997, P 29 ANN ACM S THEOR, P176
[3]  
[Anonymous], PHYS REV A
[4]  
[Anonymous], 1998, INTRO QUANTUM COMPUT
[5]  
[Anonymous], P 40 ANN S FDN COMP
[6]   Quantum error correction via codes over GF (4) [J].
Calderbank, AR ;
Rains, EM ;
Shor, PW ;
Sloane, NJA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (04) :1369-1387
[7]   Good quantum error-correcting codes exist [J].
Calderbank, AR ;
Shor, PW .
PHYSICAL REVIEW A, 1996, 54 (02) :1098-1105
[8]   Quantum-error correction and orthogonal geometry [J].
Calderbank, AR ;
Rains, EM ;
Shor, PW ;
Sloane, NJA .
PHYSICAL REVIEW LETTERS, 1997, 78 (03) :405-408
[9]  
Chuang I. N., 2000, Quantum Computation and Quantum Information
[10]  
Feynman R. P., 2010, Quantum Mechanics and Path Integrals, DOI 10.1063/1.3048320