Multi-bump solutions for the nonlinear magnetic Choquard equation with deepening potential well

被引:27
作者
Ji, Chao [1 ]
Radulescu, Vicentiu D. [2 ,3 ,4 ]
机构
[1] East China Univ Sci & Technol, Sch Math, Shanghai 200237, Peoples R China
[2] AGH Univ Sci & Technol, Fac Appl Math, PL-30059 Krakow, Poland
[3] Univ Craiova, Dept Math, Craiova 200585, Romania
[4] Romanian Acad, Simion Stoilow Inst Math, POB 1-764, Bucharest 014700, Romania
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
Nonlinear Choquard equation; Magnetic field; Multi-bump solution; Variational methods; SCHRODINGER-EQUATIONS; POSITIVE SOLUTIONS; SEMICLASSICAL LIMIT; ELLIPTIC PROBLEMS; CRITICAL GROWTH; BOUND-STATES; EXISTENCE; MULTIPLICITY;
D O I
10.1016/j.jde.2021.10.030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, using variational methods, we study multiplicity of multi-bump solutions for the following nonlinear magnetic Choquard equation {-(del+iA(x))(2)u+(lambda V(x) +1)u =(1/vertical bar x vertical bar(mu) * vertical bar u vertical bar(p))vertical bar u vertical bar(p-2)u x is an element of R-N, u is an element of H-1(R-N, C) where N >= 2, lambda > 0 is a real parameter, 0 < mu < 2, i is the imaginary unit, p is an element of (2, 2*(2(N-mu)/2N)), where 2* = 2N/N-2 if N >= 3, 2* +infinity, if N = 2. The magnetic potential A is an element of L-loc(2) (R-N , R-N) and V : R-N -> R is a nonnegative continuous function. We show that if the zero set of V has several isolated connected components Omega(1), ..., Omega(k) such that the interior of Omega(j) is non-empty and partial derivative Omega(j) is smooth, then for h > 0 large enough, the above equation has at least 2(k) - 1 multi-bump solutions. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:251 / 279
页数:29
相关论文
共 40 条
[1]   Multiplicity of positive solutions for a class of problems with exponential critical growth in R2 [J].
Alves, Claudianor O. ;
Souto, Marco A. S. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 244 (06) :1502-1520
[2]  
Alves CO, 2006, ADV NONLINEAR STUD, V6, P491
[3]   Multi-bump positive solutions for a logarithmic Schrodinger equation with deepening potential well [J].
Alves, Claudianor O. ;
Ji, Chao .
SCIENCE CHINA-MATHEMATICS, 2022, 65 (08) :1577-1598
[4]   Existence of multi-bump solutions for a class of elliptic problems involving the biharmonic operator [J].
Alves, Claudianor O. ;
Nobrega, Alannio B. .
MONATSHEFTE FUR MATHEMATIK, 2017, 183 (01) :35-60
[5]   EXISTENCE OF POSITIVE MULTI-BUMP SOLUTIONS FOR A SCHRODINGER-POISSON SYSTEM IN R3 [J].
Alves, Claudianor O. ;
Yang, Minbo .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (11) :5881-5910
[6]   Multi-bump solutions for Choquard equation with deepening potential well [J].
Alves, Claudianor O. ;
Nobrega, Alannio B. ;
Yang, Minbo .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2016, 55 (03)
[7]   Multi-bump solutions for a Kirchhoff-type problem [J].
Alves, Claudianor O. ;
Figueiredo, Giovany M. .
ADVANCES IN NONLINEAR ANALYSIS, 2016, 5 (01) :1-26
[8]   Multiple semiclassical solutions for a nonlinear Choquard equation with magnetic field [J].
Alves, Claudianor O. ;
Figueiredo, Giovany M. ;
Yang, Minbo .
ASYMPTOTIC ANALYSIS, 2016, 96 (02) :135-159
[9]   MULTI-BUMP SOLUTIONS FOR A CLASS OF QUASILINEAR EQUATIONS ON R [J].
Alves, Claudianor O. ;
Miyagaki, Olimpio H. ;
Soares, Sergio H. M. .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2012, 11 (02) :829-844
[10]   Multiple Solutions for a Nonlinear Schrodinger Equation with Magnetic Fields [J].
Alves, Claudianor O. ;
Figueiredo, Giovany M. ;
Furtado, Marcelo F. .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (09) :1565-1586