Norm Bounds for the Inverse for Generalized Nekrasov Matrices in Point-Wise and Block Case

被引:2
作者
Nedovic, M. [1 ]
机构
[1] Univ Novi Sad, Dept Fundamental Sci, Fac Tech Sci, Trg D Obradovica 6, Novi Sad 21000, Serbia
关键词
Semi-Nekrasov matrices; Block matrices; Maximum norm bounds; INFINITY NORM; H-MATRICES; SCHUR;
D O I
10.2298/FIL2108705N
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Lower-semi-Nekrasov matrices represent a generalization of Nekrasov matrices. For the inverse of lower-semi-Nekrasov matrices, a max-norm bound is proposed. Numerical examples are given to illustrate that new norm bound can give tighter results compared to already known bounds when applied to Nekrasov matrices. Also, we presented new max-norm bounds for the inverse of lower-semi-Nekrasov matrices in the block case. We considered two types of block generalizations and illustrated the results with numerical examples.
引用
收藏
页码:2705 / 2714
页数:10
相关论文
共 24 条
[1]  
BAILEY DW, 1969, LINEAR ALGEBRA APPL, V2, P303, DOI DOI 10.1016/0024-3795(69)90032-9
[2]   SEMI-STRICT DIAGONAL DOMINANCE [J].
BEAUWENS, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1976, 13 (01) :109-112
[3]  
Berman A., 1994, NONNEGATIVE MATRICES, V9
[4]   Further results on H-matrices and their Schur complements [J].
Cvetkovic, Ljiljana ;
Kostic, Vladimir ;
Kovacevic, Maja ;
Szulc, Tomasz .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 198 (02) :506-510
[5]   Generalizations of Nekrasov matrices and applications [J].
Cvetkovic, Ljiljana ;
Kostic, Vladimir ;
Nedovic, Maja .
OPEN MATHEMATICS, 2015, 13 (01) :96-105
[6]   Max norm estimation for the inverse of block matrices [J].
Cvetkovic, Ljiljana ;
Doroslovacki, Ksenija .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 242 :694-706
[7]   Infinity norm bounds for the inverse of Nekrasov matrices [J].
Cvetkovic, Ljiljana ;
Dai, Ping-Fan ;
Doroslovacki, Ksenija ;
Li, Yao-Tang .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (10) :5020-5024
[8]   Max-norm bounds for the inverse of S-Nekrasov matrices [J].
Cvetkovic, Ljiljana ;
Kostic, Vladimir ;
Doroslovacki, Ksenija .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (18) :9498-9503
[9]   Eigenvalue localization refinements for the Schur complement [J].
Cvetkovic, Ljiljana ;
Nedovic, Maja .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (17) :8341-8346
[10]   Special H-matrices and their Schur and diagonal-Schur complements [J].
Cvetkovic, Ljiljana ;
Nedovic, Maja .
APPLIED MATHEMATICS AND COMPUTATION, 2009, 208 (01) :225-230