Improved deterministic approximation algorithms for Max TSP

被引:20
作者
Chen, ZZ [1 ]
Okamoto, Y
Wang, LS
机构
[1] Tokyo Denki Univ, Dept Math Sci, Hatosyama, Saitama 3500394, Japan
[2] City Univ Hong Kong, Dept Comp Sci, Kowloon, Hong Kong, Peoples R China
[3] City Univ Hong Kong, Hong Kong, Hong Kong, Peoples R China
关键词
approximation algorithms; graph algorithms; randomized algorithms;
D O I
10.1016/j.ipl.2005.03.011
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present an O(n(3))-time approximation algorithm for the maximum traveling salesman problem whose approximation ratio is asymptotically 61/81, where n is the number of vertices in the input complete edge-weighted (undirected) graph. We also present an O(n(3))-time approximation algorithm for the metric case of the problem whose approximation ratio is asymptotically 17/20. Both algorithms improve on the previous bests. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:333 / 342
页数:10
相关论文
共 10 条
[1]  
Barvinok A, 1998, LECT NOTES COMPUT SC, V1412, P195
[2]  
CHEN ZG, UNPUB
[3]  
Chen ZZ, 1996, THEOR COMPUT SCI, V161, P1, DOI 10.1016/0304-3975(95)00110-7
[4]   An approximation algorithm for the maximum traveling salesman problem [J].
Hassin, R ;
Rubinstein, S .
INFORMATION PROCESSING LETTERS, 1998, 67 (03) :125-130
[5]   Better approximations for max TSP [J].
Hassin, R ;
Rubinstein, S .
INFORMATION PROCESSING LETTERS, 2000, 75 (04) :181-186
[6]   A 7/8-approximation algorithm for metric max TSP [J].
Hassin, R ;
Rubinstein, S .
INFORMATION PROCESSING LETTERS, 2002, 81 (05) :247-251
[7]   CONSTRUCTING A PERFECT MATCHING IS IN RANDOM NC [J].
KARP, RM ;
UPFAL, E ;
WIGDERSON, A .
COMBINATORICA, 1986, 6 (01) :35-48
[8]  
KOSTOCHKA AV, 1985, UPRAVLYAEMYE SISTEMY, V26, P55
[9]   MATCHING IS AS EASY AS MATRIX-INVERSION [J].
MULMULEY, K ;
VAZIRANI, UV ;
VAZIRANI, VV .
COMBINATORICA, 1987, 7 (01) :105-113
[10]  
SERDYUKOV AI, 1984, UPRAVLYAEMYE SISTEMY, V25, P80