Low-Temperature Atmospheric Pressure Plasma-Enhanced CVD of Nanocomposite Coatings "Molybdenum Disulfide (Filler)-Silicon Oxide (Matrix)"

被引:10
作者
Alexandrov, Sergey E. [1 ]
Tyurikov, Kirill S. [1 ]
Kirilenko, Demid A. [2 ]
Redkov, Alexey V. [3 ]
Lipovskii, Andrey A. [4 ]
机构
[1] Peter Great St Petersburg Polytech Univ, Politekhnicheskaya 29, St Petersburg 195251, Russia
[2] Russian Acad Sci, Ioffe Phys Tech Inst, Politekhnicheskaya 26, St Petersburg 194021, Russia
[3] Inst Problems Mech Engn, VO Bolshoj Prosp 61, St Petersburg 199178, Russia
[4] St Petersburg Acad Univ, Khlopina 8-3, St Petersburg 194021, Russia
来源
ADVANCED MATERIALS INTERFACES | 2017年 / 4卷 / 18期
基金
俄罗斯科学基金会;
关键词
chemical vapor deposition; molybdenum disulfide; nanocomposites; silicon oxide; CHEMICAL-VAPOR-DEPOSITION; THIN-FILMS; GAS-PHASE; NANOPARTICLES; PARTICLES; SILICON; SPRAY;
D O I
10.1002/admi.201700241
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The possibility of practical realization of a two-stage chemical vapor deposition (CVD) process using as an example of nanocomposite coating molybdenum disulfide (filler)-silicon oxide (matrix) is experimentally demonstrated for the first time. Deposition is performed in a two-zone vertical tubular quartz reactor. The formation of molybdenum disulfide nanoparticles by spray pyrolysis is carried out in the upper zone, and the lower zone is used for deposition of nanocomposite coatings by atmospheric pressure plasma-enhanced CVD. An aerosol of the ammonium thiomolybdate solution in dimethylformamide is used for the synthesis of molybdenum disulfide particles, and silicon dioxide coatings are deposited from tetraethoxysilane. The structure and the composition of nanocomposite coating deposited are studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman, and Fourier transform infrared spectroscopy (FTIR) spectroscopy.
引用
收藏
页数:7
相关论文
共 37 条
[1]   Synthetic approaches to the molybdenum sulfide materials [J].
Afanasiev, Pavel .
COMPTES RENDUS CHIMIE, 2008, 11 (1-2) :159-182
[2]   Effect of aerosol chemical vapor deposition on characteristics of MoS2 particles [J].
Aleksandrov, S. E. ;
Filatov, K. D. ;
Speshilova, A. B. ;
Tyurikov, K. S. ;
Andreeva, V. D. .
RUSSIAN JOURNAL OF APPLIED CHEMISTRY, 2016, 89 (10) :1596-1600
[3]   Synthesis of molybdenum disulfide particles by aerosol-assisted chemical vapor deposition [J].
Aleksandrov, S. E. ;
Filatov, K. D. ;
Tyurikov, K. S. .
RUSSIAN JOURNAL OF APPLIED CHEMISTRY, 2016, 89 (05) :714-718
[4]  
[Anonymous], COAT TECHNOL
[5]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[6]   First example of ZnO-TiO2 nanocomposites by chemical vapor deposition:: Structure, morphology, composition, and gas sensing performances [J].
Barreca, Davide ;
Comini, Elisabetta ;
Ferrucci, Angelo P. ;
Gasparotto, Alberto ;
Maccato, Chiara ;
Maragno, Cinzia ;
Sberveglieri, Giorgio ;
Tondello, Eugenio .
CHEMISTRY OF MATERIALS, 2007, 19 (23) :5642-5649
[7]  
BINIONS R, 2011, ADV NANOCOMPOSITES S
[8]   One-step chemical vapor synthesis of Ni/graphene nanocomposites with excellent electromagnetic and electrocatalytic properties [J].
Cao, Yu ;
Su, Qingmei ;
Che, Renchao ;
Du, Gaohui ;
Xu, Bingshe .
SYNTHETIC METALS, 2012, 162 (11-12) :968-973
[9]  
Downs R, DATABASE RAMAN SPECT
[10]   Codeposition of inorganic fullerene-like WS2 nanoparticles in an electrodeposited nickel matrix under the influence of ultrasonic agitation [J].
Garcia-Lecina, E. ;
Garcia-Urrutia, I. ;
Diez, J. A. ;
Fornell, J. ;
Pellicer, E. ;
Sort, J. .
ELECTROCHIMICA ACTA, 2013, 114 :859-867