Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies

被引:67
作者
Kapil, Ansh [1 ]
Meier, Armin [1 ]
Zuraw, Aleksandra [1 ]
Steele, Keith E. [2 ]
Rebelatto, Marlon C. [2 ]
Schmidt, Guenter [1 ]
Brieu, Nicolas [1 ]
机构
[1] Definiens AG, D-80636 Munich, Germany
[2] MedImmune LLC, Gaithersburg, MD 20878 USA
关键词
CELL LUNG-CANCER; PD-L1 IMMUNOHISTOCHEMICAL ASSAYS;
D O I
10.1038/s41598-018-35501-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The level of PD-L1 expression in immunohistochemistry (IHC) assays is a key biomarker for the identification of Non-Small-Cell-Lung-Cancer (NSCLC) patients that may respond to anti PD-1/PD-L1 treatments. The quantification of PD-L1 expression currently includes the visual estimation by a pathologist of the percentage (tumor proportional scoring or TPS) of tumor cells showing PD-L1 staining. Known challenges like differences in positivity estimation around clinically relevant cut-offs and sub-optimal quality of samples makes visual scoring tedious and subjective, yielding a scoring variability between pathologists. In this work, we propose a novel deep learning solution that enables the first automated and objective scoring of PD-L1 expression in late stage NSCLC needle biopsies. To account for the low amount of tissue available in biopsy images and to restrict the amount of manual annotations necessary for training, we explore the use of semi-supervised approaches against standard fully supervised methods. We consolidate the manual annotations used for training as well the visual TPS scores used for quantitative evaluation with multiple pathologists. Concordance measures computed on a set of slides unseen during training provide evidence that our automatic scoring method matches visual scoring on the considered dataset while ensuring repeatability and objectivity.
引用
收藏
页数:10
相关论文
共 50 条
[1]  
Abadi M., 2015, TENSORFLOW LARGESCAL, DOI [DOI 10.48550/ARXIV.1605.08695, 10.5555/3026877.3026899]
[2]  
[Anonymous], 2018, ARXIV180506983
[3]   Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer [J].
Borghaei, H. ;
Paz-Ares, L. ;
Horn, L. ;
Spigel, D. R. ;
Steins, M. ;
Ready, N. E. ;
Chow, L. Q. ;
Vokes, E. E. ;
Felip, E. ;
Holgado, E. ;
Barlesi, F. ;
Kohlhaeufl, M. ;
Arrieta, O. ;
Burgio, M. A. ;
Fayette, J. ;
Lena, H. ;
Poddubskaya, E. ;
Gerber, D. E. ;
Gettinger, S. N. ;
Rudin, C. M. ;
Rizvi, N. ;
Crino, L. ;
Blumenschein, G. R. ;
Antonia, S. J. ;
Dorange, C. ;
Harbison, C. T. ;
Finckenstein, F. Graf ;
Brahmer, J. R. .
NEW ENGLAND JOURNAL OF MEDICINE, 2015, 373 (17) :1627-1639
[4]  
Bug D., 2017, BILDVERARBEITUNG MED, P173, DOI DOI 10.1007/978-3-662-54345-0_41
[5]   Deep learning based tissue analysis predicts outcome in colorectal cancer [J].
Bychkov, Dmitrii ;
Linder, Nina ;
Turkki, Riku ;
Nordling, Stig ;
Kovanen, Panu E. ;
Verrill, Clare ;
Walliander, Margarita ;
Lundin, Mikael ;
Haglund, Caj ;
Lundin, Johan .
SCIENTIFIC REPORTS, 2018, 8
[6]  
Chen Xi, 2016, Advances in Neural Information Processing Systems, V29
[7]  
Cho H., 2017, ARXIV PREPRINT ARXIV
[8]   Accurate and reproducible invasive breast cancer detection in whole-slide images: A Deep Learning approach for quantifying tumor extent [J].
Cruz-Roa, Angel ;
Gilmore, Hannah ;
Basavanhally, Ajay ;
Feldman, Michael ;
Ganesan, Shridar ;
Shih, Natalie N. C. ;
Tomaszewski, John ;
Gonzalez, Fabio A. ;
Madabhushi, Anant .
SCIENTIFIC REPORTS, 2017, 7
[9]  
Goodfellow IJ, 2014, ADV NEUR IN, V27, P2672
[10]   PD-L1 biomarker testing for non-small cell lung cancer: truth or fiction? [J].
Grigg, Claud ;
Rizvi, Naiyer A. .
JOURNAL FOR IMMUNOTHERAPY OF CANCER, 2016, 4