RGB-D SLAM in Dynamic Environments Using Static Point Weighting

被引:208
作者
Li, Shile [1 ]
Lee, Dongheui [1 ]
机构
[1] Tech Univ Munich, Dept Elect Engn & Comp Engn, D-80333 Munich, Germany
来源
IEEE ROBOTICS AND AUTOMATION LETTERS | 2017年 / 2卷 / 04期
关键词
Computer vision for other robotic applications; SLAM (Simultaneous Localization and Mapping); visual tracking;
D O I
10.1109/LRA.2017.2724759
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
We propose a real-time depth edge based RGB-D SLAM system for dynamic environment. Our visual odometry method is based on frame-to-keyframe registration, where only depth edge points are used. To reduce the influence of dynamic objects, we propose a static weighting method for edge points in the keyframe. Static weight indicates the likelihood of one point being part of the static environment. This static weight is added into the intensity assisted iterative closest point (IAICP) method to perform the registration task. Furthermore, our method is integrated into a SLAM (Simultaneous Localization and Mapping) system, where an efficient loop closure detection strategy is used. Both our visual odometry method and SLAM system are evaluated with challenging dynamic sequences from the TUM RGB-D dataset. Compared to state-of-the-art methods for dynamic environment, our method reduces the tracking error significantly.
引用
收藏
页码:2263 / 2270
页数:8
相关论文
共 27 条
  • [1] [Anonymous], 2014, RGBD MAPPING USING D
  • [2] LEAST-SQUARES FITTING OF 2 3-D POINT SETS
    ARUN, KS
    HUANG, TS
    BLOSTEIN, SD
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1987, 9 (05) : 699 - 700
  • [3] A METHOD FOR REGISTRATION OF 3-D SHAPES
    BESL, PJ
    MCKAY, ND
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1992, 14 (02) : 239 - 256
  • [4] Bose L, 2016, IEEE INT CONF ROBOT, P1323, DOI 10.1109/ICRA.2016.7487265
  • [5] Choi C, 2013, IEEE INT C INT ROBOT, P1568, DOI 10.1109/IROS.2013.6696558
  • [6] Estimating 3-D rigid body transformations: A comparison of four major algorithms
    Eggert, DW
    Lorusso, A
    Fischer, RB
    [J]. MACHINE VISION AND APPLICATIONS, 1997, 9 (5-6) : 272 - 290
  • [7] 3-D Mapping With an RGB-D Camera
    Endres, Felix
    Hess, Juergen
    Sturm, Juergen
    Cremers, Daniel
    Burgard, Wolfram
    [J]. IEEE TRANSACTIONS ON ROBOTICS, 2014, 30 (01) : 177 - 187
  • [8] A Tutorial on Graph-Based SLAM
    Grisetti, Giorgio
    Kuemmerle, Rainer
    Stachniss, Cyrill
    Burgard, Wolfram
    [J]. IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE, 2010, 2 (04) : 31 - 43
  • [9] Gutiérrez-Gómez D, 2015, IEEE INT CONF ROBOT, P83, DOI 10.1109/ICRA.2015.7138984
  • [10] RGB-D mapping: Using Kinect-style depth cameras for dense 3D modeling of indoor environments
    Henry, Peter
    Krainin, Michael
    Herbst, Evan
    Ren, Xiaofeng
    Fox, Dieter
    [J]. INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2012, 31 (05) : 647 - 663