TWO-DIMENSIONAL EULER FLOWS WITH CONCENTRATED VORTICITIES

被引:30
|
作者
del Pino, Manuel [1 ,2 ]
Esposito, Pierpaolo [3 ]
Musso, Monica [4 ,5 ]
机构
[1] Univ Chile, Dept Ingn Matemat, Santiago, Chile
[2] Univ Chile, CMM, Santiago, Chile
[3] Univ Roma Tre, Dipartimento Matemat, I-00146 Rome, Italy
[4] Politecn Torino, Dipartimento Matemat, I-10129 Turin, Italy
[5] Pontificia Univ Catolica Chile, Dept Matemat, Santiago, Chile
关键词
2D Euler equations; singular Liouville equation; Liouville formula; concentrating solutions; STATISTICAL-MECHANICS; STATIONARY FLOWS; SINGULAR LIMITS; UP SOLUTIONS; EQUATIONS; BLOW; SYMMETRY; VORTICES;
D O I
10.1090/S0002-9947-2010-04983-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a planar model of Euler flows proposed by Tur and Yanovsky (2004), we construct a family of velocity fields w(e) for it fluid in a bounded region Omega, with concentrated vorticities w(e) for epsilon > 0 small. More precisely, given a positive integer a and a sufficiently small complex number a, we find a family of stream functions psi(epsilon) which solve the Liouville equation with Dirac mass source, Delta psi(epsilon) + epsilon(2)e(psi epsilon) = 4 pi alpha delta(pn,epsilon) in Omega, psi(epsilon) = 0 on partial derivative Omega, for a suitable point p = p(a,epsilon) is an element of Omega, The vorticities w(epsilon) := -Delta(psi epsilon), concentrate in the sense that w(epsilon) + 4 pi alpha delta(pa,epsilon) - 8 pi Sigma(alpha+1)(j=1) delta(pa,epsilon) + aj -> 0 as epsilon -> 0, where the satellites a1,...,a(a+1) denote the complex (alpha + 1)-roots of a. The point p(a,epsilon) lies close to a zero point of a vector field explicitly built upon derivatives of order <= a + 1 of the regular part of Green's function of the domain.
引用
收藏
页码:6381 / 6395
页数:15
相关论文
共 50 条
  • [1] Stability of two-dimensional steady Euler flows with concentrated vorticity
    Guodong Wang
    Mathematische Annalen, 2024, 389 : 121 - 168
  • [2] Stability of two-dimensional steady Euler flows with concentrated vorticity
    Wang, Guodong
    MATHEMATISCHE ANNALEN, 2024, 389 (01) : 121 - 168
  • [3] Two-dimensional Euler flows in slowly deforming domains
    Vanneste, J.
    Wirosoetisno, D.
    PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (06) : 774 - 799
  • [4] ON BOUNDED TWO-DIMENSIONAL GLOBALLY DISSIPATIVE EULER FLOWS
    Gebhard, Bjoern
    Kolumban, Jozsef J.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2022, 54 (03) : 3457 - 3479
  • [5] Parallel processing of two-dimensional euler equations for compressible flows
    Dogru, K.
    Aksel, M.H.
    Tuncer, I.H.
    Modelling, Measurement and Control B, 2008, 77 (3-4): : 50 - 70
  • [6] Nonlinear stability of Euler flows in two-dimensional periodic domains
    Wirosoetisno, D
    Shepherd, TG
    GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS, 1999, 90 (3-4): : 229 - 246
  • [7] A stable tripole vortex model in two-dimensional Euler flows
    Viudez, A.
    JOURNAL OF FLUID MECHANICS, 2019, 878
  • [8] On Subsonic Euler Flows with Stagnation Points in Two-Dimensional Nozzles
    Du, Lili
    Xie, Chunjing
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2014, 63 (05) : 1499 - 1523
  • [9] Geometric microcanonical theory of two-dimensional truncated Euler flows
    Van Kan, A.
    Alexakis, A.
    Brachet, Andm.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2022, 380 (2226):
  • [10] Identification of concentrated structures in slightly compressible two-dimensional flows
    Creusé, E
    Mortazavi, I
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE B-MECANIQUE, 2001, 329 (09): : 693 - 699