Attraction/repulsion functions in a new class of chaotic systems

被引:9
作者
Duan, ZS [1 ]
Wang, JZ
Huang, L
机构
[1] Peking Univ, State Key Lab Turbulence & Complex Syst, Beijing 100871, Peoples R China
[2] Peking Univ, Dept Mech & Engn Sci, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
attraction/repulsion function; chaos; frequency-domain method; dichotomy;
D O I
10.1016/j.physleta.2004.11.056
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this Letter, a new kind of chaotic system is introduced by combining a three-dimensional linear system with attraction/repulsion functions developed in the context of swarm aggregations. Rich chaotic oscillating phenomena appear in this new system. Some simple extension to multi-input and multi-output systems is also given. The frequency-domain condition for the property of dichotomy is presented for a more general system. Based on the frequency-domain condition given here, some parameter domains can be determined for the nonexistence of chaotic attractors or limit cycles in the system given in this Letter. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:139 / 149
页数:11
相关论文
共 27 条
[1]  
Anderson B. D. O., 1967, SIAM Journal on Control, V5, P171
[2]  
BASO M, 1996, P 37 IEEE CDC TAMP F
[3]  
Bonabeau E., 1999, Swarm Intelligence: From Natural to Artificial Systems, DOI 10.1093/oso/9780195131581.001.0001
[4]   On a generalized Lorenz canonical form of chaotic systems [J].
Celikovsky, S ;
Chen, GR .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (08) :1789-1812
[5]  
Chen G., 1998, CHAOS ORDER METHODOL
[6]   Yet another chaotic attractor [J].
Chen, GR ;
Ueta, T .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (07) :1465-1466
[7]   Collective behavior of interacting self-propelled particles [J].
Czirók, A ;
Vicsek, T .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2000, 281 (1-4) :17-29
[8]  
DUAN ZS, 2004, IN PRESS INT J BIFUR, V14
[9]   Stability analysis of social foraging swarms [J].
Gazi, V ;
Passino, KM .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2004, 34 (01) :539-557
[10]   Stability analysis of swarms [J].
Gazi, V ;
Passino, KM .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (04) :692-697