Synthesis of graphene oxide/polyacrylamide composite membranes for organic dyes/water separation in water purification

被引:91
|
作者
Cheng, Meng-meng [1 ]
Huang, Lin-jun [1 ]
Wang, Yan-xin [1 ]
Zhao, Yun-chao [1 ]
Tang, Jian-guo [1 ]
Wang, Yao [1 ]
Zhang, Yang [1 ]
Hedayati, Mohammadhasan [2 ]
Kipper, Matt J. [2 ]
Wickramasinghe, S. Ranil [3 ]
机构
[1] Qingdao Univ, Coll Mat Sci & Engn, Natl Ctr Int Res Hybrid Mat Technol, Inst Hybrid Mat, Qingdao 266071, Peoples R China
[2] Colorado State Univ, Dept Chem & Biochem Engn, Ft Collins, CO 80523 USA
[3] Univ Arkansas, Dept Chem Engn, Fayetteville, AR 72703 USA
关键词
GRAPHITE OXIDE; NANOFILTRATION MEMBRANE; FILMS; PERFORMANCE; STABILITY; MOLECULES; REMOVAL; PH; DELAMINATION; FILTRATION;
D O I
10.1007/s10853-018-2828-9
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
To obtain nanofiltration membranes with high-performance in desalination and water purification, membranes of graphene oxide (GO), reduced graphene oxide (rGO) and GO/polyacrylamide (PAM) are prepared by a vacuum filtration method. This method is conducted in aqueous solution without any organic solvents. The graphene-based membranes (GBMs) are characterized by UV-visible spectroscopy, Fourier-transform infrared spectroscopy, transmission electron microscopy, atomic force microscopy, scanning electron microscopy, thermogravimetric analysis and X-ray photoelectron spectroscopy. The hydrophilicity of GBMs is also evaluated by contact angle measurement. The interlayer spacing of GO membrane (0.85nm), GO/PAM membrane (0.68nm) and rGO membrane (0.36nm) are measured by X-ray diffraction. The performance of the GBMs is evaluated on a dead-end filtration device. The water flux and retention of rhodamine B of the membranes are 399.04Lm(-2)h(-1)bar(-1) and 85.03% (GO), 188.89Lm(-2)h(-1)bar(-1) and 95.43% (GO/PAM), 85.85Lm(-2)h(-1)bar(-1) and 97.06% (rGO), respectively. The GO/PAM membrane has the best comprehensive separation performance because of its proper interlayer spacing. GO/PAM membranes provide potential advantages in the design of high-performance membranes for molecular separation and water purification.
引用
收藏
页码:252 / 264
页数:13
相关论文
共 50 条
  • [11] Enabling Graphene Oxide Nanosheets as Water Separation Membranes
    Hu, Meng
    Mi, Baoxia
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2013, 47 (08) : 3715 - 3723
  • [12] Novel Halloysite Nanotubes Intercalated Graphene Oxide Based Composite Membranes for Multifunctional Applications: Oil/Water Separation and Dyes Removal
    Zeng, Guangyong
    He, Yi
    Ye, Zhongbin
    Yang, Xi
    Chen, Xi
    Ma, Jing
    Li, Fei
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2017, 56 (37) : 10472 - 10481
  • [13] Superoleophobic graphene oxide/halloysite nanotube composite membranes for oil-water separation
    Zhang, Xing
    Zhang, Zhepeng
    Zeng, Zhixiang
    Du, Shuangming
    Liu, Eryong
    MATERIALS CHEMISTRY AND PHYSICS, 2021, 263
  • [14] Revolutionizing water purification: Unleashing graphene oxide (GO) membranes
    Shah, Izaz Ali
    Bilal, Muhammad
    Ihsanullah, I.
    Ali, Sharafat
    Yaqub, Muhammad
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2023, 11 (06):
  • [15] Printing ultrathin graphene oxide nanofiltration membranes for water purification
    Fathizadeh, Mahdi
    Huynh Ngoc Tien
    Khivantsev, Konstantin
    Chen, Jung-Tsai
    Yu, Miao
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (39) : 20860 - 20866
  • [16] Mildly reduced graphene oxide membranes for water purification applications
    Kumar, Shani
    Garg, Amit
    Chowdhuri, Arijit
    NANO EXPRESS, 2022, 3 (04):
  • [17] Graphene oxide-based membranes for water desalination and purification
    Tiwary, Saurabh Kr
    Singh, Maninderjeet
    Chavan, Shubham Vasant
    Karim, Alamgir
    NPJ 2D MATERIALS AND APPLICATIONS, 2024, 8 (01)
  • [18] Graphene oxide-based membranes for water desalination and purification
    Saurabh Kr Tiwary
    Maninderjeet Singh
    Shubham Vasant Chavan
    Alamgir Karim
    npj 2D Materials and Applications, 8
  • [19] Graphene oxide-TiO2 composite filtration membranes and their potential application for water purification
    Xu, Chao
    Cui, Aiju
    Xu, Yuelian
    Fu, Xianzhi
    CARBON, 2013, 62 : 465 - 471
  • [20] Stable graphene oxide-based composite membranes intercalated with montmorillonite nanoplatelets for water purification
    Ma, Jing
    He, Yi
    Shi, Heng
    Fan, Yi
    Yu, Hao
    Li, Yubin
    JOURNAL OF MATERIALS SCIENCE, 2019, 54 (03) : 2241 - 2255