Resveratrol attenuates brain damage in permanent focal cerebral ischemia via activation of PI3K/Akt signaling pathway in rats

被引:30
|
作者
Lei, Junrong [1 ]
Chen, Qianxue [1 ]
机构
[1] Wuhan Univ, Renmin Hosp, Dept Neurosurg, 99 Zhangzhidong Rd, Wuhan 430060, Hubei, Peoples R China
关键词
Resveratrol; PI3K/Akt; ischemic brain damage; NF-KAPPA-B; ARTERY OCCLUSION; ACUTE-PHASE; STROKE; INJURY; INFLAMMATION; NEUROPROTECTION; REPERFUSION; MECHANISMS; APOPTOSIS;
D O I
10.1080/01616412.2018.1509826
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Objective: The aim of this study was to evaluate the potential molecular mechanism of resveratrol (RSV) that attenuates brain damage from focal cerebral ischemia. Methods and materials: To investigate whether phosphatidylinositol 3-kinase/Akt (PI3K/Akt) pathway was involved in RSV anti-inflammatory and neuroprotective properties. Middle cerebral artery occlusion (MCAO) animal model was used in this study. Adult male Sprague-Dawley (SD) rats underwent MCAO, and then received treatment with RSV or vehicle after the onset of ischemia. PI3K inhibitor LY294002 was injected intracerebroventricularly to inhibit the PI3K/Akt signaling pathway. Neurological deficit scores and cerebral water content were assessed 24 h after MCAO. The inflammatory factors interleukin (IL)-1 beta, tumor necrosis factor (TNF alpha), and cyclooxygenase-2 (COX2) mRNA level were examined by real-time PCR. The enzymatic activity of myeloperoxidase (MPO) was measured 24 h after MCAO. The protein expression of phospho-Akt and COX2 in ischemic brain were determined by western blot. Results: RSV significantly reduced neurological deficit scores, cerebral water content and the enzymatic activity of MPO, all of which were abolished by LY294002 administration. Real-time PCR showed that RSV significantly suppressed the upregulation of the inflammatory factors IL-1 beta, TNF alpha, COX2 mRNA levels. RSV significantly inhibited upregulated the protein expression of COX2 24 h after MCAO, which effect was abolished by LY294002 administration. Conclusion: RSV attenuated ischemic brain damage induced by cerebral artery occlusion mainly through PI3K/Akt signaling pathway.
引用
收藏
页码:1014 / 1020
页数:7
相关论文
共 50 条
  • [21] 5-LOX Inhibitor Zileuton Reduces Inflammatory Reaction and Ischemic Brain Damage Through the Activation of PI3K/Akt Signaling Pathway
    Tu, Xian-kun
    Zhang, Hua-bin
    Shi, Song-sheng
    Liang, Ri-sheng
    Wang, Chun-hua
    Chen, Chun-mei
    Yang, Wei-zhong
    NEUROCHEMICAL RESEARCH, 2016, 41 (10) : 2779 - 2787
  • [22] Salidroside Inhibits Inflammation Through PI3K/Akt/HIF Signaling After Focal Cerebral Ischemia in Rats
    Wei, Yicong
    Hong, Haimian
    Zhang, Xiaoqin
    Lai, Wenfang
    Wang, Yingzheng
    Chu, Kedan
    Brown, John
    Hong, Guizhu
    Chen, Lidian
    INFLAMMATION, 2017, 40 (04) : 1297 - 1309
  • [23] Astragaloside IV alleviates the brain damage induced by subarachnoid hemorrhage via PI3K/Akt signaling pathway
    Yang, Long
    Dong, Xiujuan
    Zhang, Wei
    NEUROSCIENCE LETTERS, 2020, 735
  • [24] SRSF3 Alleviates Ischemic Cerebral Infarction Damage by Activating the PI3K/AKT Pathway
    Cui, Liangliang
    Zhao, Shuying
    Liu, Hong
    DEVELOPMENTAL NEUROSCIENCE, 2024, 46 (05) : 308 - 318
  • [25] Geniposide attenuates neonatal mouse brain injury after hypoxic-ischemia involving the activation of PI3K/Akt signaling pathway
    Liu, Fang
    Wang, Yanxia
    Yao, Wenjing
    Xue, Yuanyuan
    Zhou, Jianqin
    Liu, Zhaohong
    JOURNAL OF CHEMICAL NEUROANATOMY, 2019, 102
  • [26] Tamibarotene Improves Hippocampus Injury Induced by Focal Cerebral Ischemia-Reperfusion via Modulating PI3K/Akt Pathway in Rats
    Tian, Xiaocui
    An, Ruidi
    Luo, Yujie
    Li, Minghang
    Xu, Lu
    Dong, Zhi
    JOURNAL OF STROKE & CEREBROVASCULAR DISEASES, 2019, 28 (07) : 1832 - 1840
  • [27] Quercetin postconditioning attenuates myocardial ischemia/reperfusion injury in rats through the PI3K/Akt pathway
    Wang, Y.
    Zhang, Z. Z.
    Wu, Y.
    Ke, J. J.
    He, X. H.
    Wang, Y. L.
    BRAZILIAN JOURNAL OF MEDICAL AND BIOLOGICAL RESEARCH, 2013, 46 (10) : 861 - 867
  • [28] β-Caryophyllene Pretreatment Alleviates Focal Cerebral Ischemia-Reperfusion Injury by Activating PI3K/Akt Signaling Pathway
    Zhang, Qian
    An, Ruidi
    Tian, Xiaocui
    Yang, Mei
    Li, Minghang
    Lou, Jie
    Xu, Lu
    Dong, Zhi
    NEUROCHEMICAL RESEARCH, 2017, 42 (05) : 1459 - 1469
  • [29] β-Caryophyllene Pretreatment Alleviates Focal Cerebral Ischemia-Reperfusion Injury by Activating PI3K/Akt Signaling Pathway
    Qian Zhang
    Ruidi An
    Xiaocui Tian
    Mei Yang
    Minghang Li
    Jie Lou
    Lu Xu
    Zhi Dong
    Neurochemical Research, 2017, 42 : 1459 - 1469
  • [30] Icariin protects against cerebral ischemia/reperfusion injury by activating the PI3K/Akt signaling pathway
    He, Jiaxuan
    Lv, Jianrui
    Li, Wei
    Li, Siyuan
    Zhang, Yong
    Wei, Haidong
    Pan, Weikang
    Gao, Ya
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE, 2017, 10 (02): : 2367 - 2373