DsMCL: Dual-Level Stochastic Multiple Choice Learning for Multi-Modal Trajectory Prediction

被引:0
|
作者
Wang, Zehan [1 ,2 ]
Zhou, Sihong [1 ,2 ]
Huang, Yuyao [1 ,2 ]
Tian, Wei [1 ,2 ]
机构
[1] Tongji Univ, Sch Automot Studies, Shanghai, Peoples R China
[2] Tongji Univ, Inst Intelligent Vehicles, Shanghai, Peoples R China
来源
2020 IEEE 23RD INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC) | 2020年
关键词
D O I
10.1109/itsc45102.2020.9294420
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
For both driving safety and efficiency, automated vehicles should be able to predict the behavior of surrounding traffic participants in a dynamic environment. To accomplish such a task, trajectory prediction is the key. Although many researchers have been engaged in this topic, it is still challenging. One of the important and inherent factors is the multi-modality of vehicle motion. At present, related researches have more or less shortcomings for multi-modal trajectory prediction, such as requiring explicit modal labels or multiple forward propagation caused by sampling. In this work, we focus on overcoming these issues by pointing out the dual-levels of multi-modal characteristics in vehicle motion and proposing the dual-level stochastic multiple choice learning method (named as DsMCL, for short). This method does not require modal labels and can implement a comprehensive probabilistic multi-modal trajectory prediction by a single forward propagation. By experiments on the NGSIM and HighD datasets, our method has proven significant improvement on several trajectory prediction frameworks and achieves state-of-the-art performance.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Learning Pedestrian Group Representations for Multi-modal Trajectory Prediction
    Bae, Inhwan
    Park, Jin-Hwi
    Jeon, Hae-Gon
    COMPUTER VISION, ECCV 2022, PT XXII, 2022, 13682 : 270 - 289
  • [2] Multi-Modal Trajectory Prediction of NBA Players
    Hauri, Sandro
    Djuric, Nemanja
    Radosavljevic, Vladan
    Vucetic, Slobodan
    2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2021), 2021, : 1639 - 1648
  • [3] Dual-level interactive multimodal-mixup encoder for multi-modal neural machine translation
    Junjie Ye
    Junjun Guo
    Applied Intelligence, 2022, 52 : 14194 - 14203
  • [4] Dual-level interactive multimodal-mixup encoder for multi-modal neural machine translation
    Ye, Junjie
    Guo, Junjun
    APPLIED INTELLIGENCE, 2022, 52 (12) : 14194 - 14203
  • [5] Highly Interactive Self-Supervised Learning for Multi-Modal Trajectory Prediction
    Xie, Wenda
    Liu, Yahui
    Zhao, Hongxia
    Guo, Chao
    Dai, Xingyuan
    Lv, Yisheng
    IFAC PAPERSONLINE, 2024, 58 (10): : 231 - 236
  • [6] A Lightweight Multi-Modal Vehicle Trajectory Prediction Algorithm
    Li Z.
    Sun H.
    Hao Z.
    Xiao D.
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2024, 58 (06): : 14 - 23
  • [7] Multi-Modal Graph Learning for Disease Prediction
    Zheng, Shuai
    Zhu, Zhenfeng
    Liu, Zhizhe
    Guo, Zhenyu
    Liu, Yang
    Yang, Yuchen
    Zhao, Yao
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2022, 41 (09) : 2207 - 2216
  • [8] Multi-modal graph learning for disease prediction
    Zheng, Shuai
    Zhu, Zhenfeng
    Liu, Zhizhe
    Guo, Zhenyu
    Liu, Yang
    Zhao, Yao
    arXiv, 2021,
  • [9] Exploring Complex Dependencies for Multi-modal Semantic Trajectory Prediction
    Liu, Jie
    Zhang, Lei
    Zhu, Shaojie
    Liu, Bailong
    Liang, Zhizheng
    Yang, Susong
    NEURAL PROCESSING LETTERS, 2022, 54 (02) : 961 - 985
  • [10] Kernel Trajectory Maps for Multi-Modal Probabilistic Motion Prediction
    Zhi, Weiming
    Ott, Lionel
    Ramos, Fabio
    CONFERENCE ON ROBOT LEARNING, VOL 100, 2019, 100