A Hermite Pseudo-spectral method for solving systems of Gross-Pitaevskii equations

被引:0
作者
Weishaeupl, Rada M.
Schmeiser, Christian
Markowich, Peter A.
Pablo Borgna, Juan
机构
[1] Univ Vienna, Fac Math, A-1090 Vienna, Austria
[2] Univ Vienna, Inst Math, A-1090 Vienna, Austria
[3] Univ Buenos Aires, Dept Matemat, RA-1053 Buenos Aires, DF, Argentina
关键词
Gross-Pitaevskii equation; spectral decomposition; Fourier expansion; Hermite polynomials; BOSE-EINSTEIN CONDENSATION; DILUTE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose and analyze discretization methods for solving finite systems of non-linearly coupled Schrodinger equations, which arise as an asymptotic limit of the three-dimensional Gross-Pitaevskii equation with strongly anisotropic potential. A pseudo-spectral method with Hermite basis functions combined with a Crank-Nicolson type method is introduced. Numerical experiments are presented, including a comparison with an alternative discretization approach.
引用
收藏
页码:299 / 312
页数:14
相关论文
共 15 条
[1]   OBSERVATION OF BOSE-EINSTEIN CONDENSATION IN A DILUTE ATOMIC VAPOR [J].
ANDERSON, MH ;
ENSHER, JR ;
MATTHEWS, MR ;
WIEMAN, CE ;
CORNELL, EA .
SCIENCE, 1995, 269 (5221) :198-201
[2]   Bose-Einstein condensation of atomic gases [J].
Anglin, JR ;
Ketterle, W .
NATURE, 2002, 416 (6877) :211-218
[3]   Fourth-order time-splitting Laguerre-Hermite pseudospectral method for Bose-Einstein condensates [J].
Bao, WZ ;
Shen, J .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 26 (06) :2010-2028
[4]   On the Gross-Pitaevskii equation with strongly anisotropic confinement:: Formal asymptotics and numerical experiments [J].
Bao, WZ ;
Markowich, PA ;
Schmeiser, C ;
Weishäupl, RM .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2005, 15 (05) :767-782
[5]   Numerical solution of the Gross-Pitaevskii equation for Bose-Einstein condensation [J].
Bao, WZ ;
Jaksch, D ;
Markowich, PA .
JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 187 (01) :318-342
[6]   The nonlinear Schrodinger equation with a strongly anisotropic harmonic potential [J].
Ben Abdallah, N ;
Méhats, F ;
Schmeiser, C ;
Weishäupl, RM .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2005, 37 (01) :189-199
[7]  
BENABDALLAH N, TIME AVERAGING STRON
[8]   Remarks on nonlinear Schrodinger equations with harmonic potential [J].
Carles, R .
ANNALES HENRI POINCARE, 2002, 3 (04) :757-772
[9]  
Cazenave T., 2003, SEMILINEAR SCHRODING, V10
[10]   Theory of Bose-Einstein condensation in trapped gases [J].
Dalfovo, F ;
Giorgini, S ;
Pitaevskii, LP ;
Stringari, S .
REVIEWS OF MODERN PHYSICS, 1999, 71 (03) :463-512