A new approach to hypergeometric transformation formulas

被引:1
作者
Otsubo, Noriyuki [1 ]
机构
[1] Chiba Univ, Dept Math & Informat, Inage Ku, Chiba 2638522, Japan
关键词
Hypergeometric functions; Basic hypergeometric functions; Transformation formulas;
D O I
10.1007/s11139-020-00286-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a new method to prove in a uniform and easy way various transformation formulas for Gauss hypergeometric functions. The key is Jacobi's canonical form of the hypergeometric differential equation. Analogy forq-hypergeometric functions is also studied.
引用
收藏
页码:793 / 816
页数:24
相关论文
共 26 条
[1]  
Appell P., 1926, Fonctions hypergeometriques et hyperspheriques: polynomes d'Hermite
[2]   RAMANUJANS THEORIES OF ELLIPTIC FUNCTIONS TO ALTERNATIVE BASES [J].
BERNDT, BC ;
BHARGAVA, S ;
GARVAN, FG .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 347 (11) :4163-4244
[3]  
Berndt BC., 1989, Ramanujan's Notebooks
[4]   SOME CUBIC MODULAR IDENTITIES OF RAMANUJAN [J].
BORWEIN, JM ;
BORWEIN, PB ;
GARVAN, FG .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 343 (01) :35-47
[5]   A CUBIC COUNTERPART OF JACOBIS IDENTITY AND THE AGM [J].
BORWEIN, JM ;
BORWEIN, PB .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 323 (02) :691-701
[6]   On Ramanujan's cubic transformation formula for 2F1(1/3, 2/3; 1; z) [J].
Chan, HH .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1998, 124 :193-204
[7]   Inversion formulas for elliptic functions [J].
Cooper, Shaun .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2009, 99 :461-483
[8]  
Erdelyi A, 1953, HIGHER TRANSCENDENTA
[9]  
Gasper G., 2004, Encycl. Math. Appl., Vsecond
[10]  
Gauss CF., 1876, Werke, P207