On the zero-divisor graphs of finite free semilattices

被引:2
作者
Toker, Kemal [1 ]
机构
[1] Cukurova Univ, Dept Math, Adana, Turkey
关键词
Finite free semilattice; zero-divisor graph; clique number; domination number; perfect graph; Hamiltonian graph;
D O I
10.3906/mat-1508-38
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
SLx be the free semilattice on a finite nonempty set X. There exists an undirected graph Gamma(SLx) associated with SLx whose vertices are the proper subsets of X, except the empty set, and two distinct vertices A and B of Gamma(SLx) are adjacent if and only if A boolean OR B = X. In this paper, the diameter, radius, girth, degree of any vertex, domination number, independence number, clique number, chromatic number, and chromatic index of Gamma(SLx) have been established. Moreover, we have determined when Gamma(SLx) is a perfect graph and when the core of Gamma(SLx) is a Hamiltonian graph.
引用
收藏
页码:824 / 831
页数:8
相关论文
共 11 条
[1]   The zero-divisor graph of a commutative ring [J].
Anderson, DF ;
Livingston, PS .
JOURNAL OF ALGEBRA, 1999, 217 (02) :434-447
[2]  
Badawi A, 2008, COMMUN ALGEBRA, V86, P8078
[3]   COLORING OF COMMUTATIVE RINGS [J].
BECK, I .
JOURNAL OF ALGEBRA, 1988, 116 (01) :208-226
[4]  
Chartrand G, 2009, CRC DISCR MATH APPL, P1
[5]   The strong perfect graph theorem [J].
Chudnovsky, Maria ;
Robertson, Neil ;
Seymour, Paul ;
Thomas, Robin .
ANNALS OF MATHEMATICS, 2006, 164 (01) :51-229
[6]   Zero divisor graphs of semigroups [J].
DeMeyer, F ;
DeMeyer, L .
JOURNAL OF ALGEBRA, 2005, 283 (01) :190-198
[7]   The zero-divisor graph of a commutative semigroup [J].
DeMeyer, FR ;
McKenzie, T ;
Schneider, K .
SEMIGROUP FORUM, 2002, 65 (02) :206-214
[8]  
Gross J. L., 2003, Handbook of Graph Theory, DOI 10.1201/9780203490204
[9]  
Howie J.M., 1995, Fundamentals of Semigroup Theory
[10]   Decompositions for edge-coloring join graphs and cobipartite graphs [J].
Machado, Raphael C. S. ;
de Figueiredo, Celina M. N. .
DISCRETE APPLIED MATHEMATICS, 2010, 158 (12) :1336-1342