The maximum of the minimal multiplicity of eigenvalues of symmetric matrices whose pattern is constrained by a graph

被引:4
作者
Oblak, Polona [1 ]
Smigoc, Helena [2 ]
机构
[1] Univ Ljubljana, Fac Comp & Informat Sci, Vecna Pot 113, SI-1000 Ljubljana, Slovenia
[2] Univ Coll Dublin, Sch Math Sci, Dublin 4, Ireland
基金
爱尔兰科学基金会;
关键词
Symmetric matrix; Multiplicity of an eigenvalue; Minimal rank; Graph; LISTS; TREES; RANK;
D O I
10.1016/j.laa.2016.09.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we introduce a parameter Mm(G), defined as the maximum over the minimal multiplicities of eigenvalues among all symmetric matrices corresponding to a graph G. We develop basic properties of Mm(G) and compute it for several families of graphs. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:48 / 70
页数:23
相关论文
共 16 条
  • [1] Ahmadi B, 2013, ELECTRON J LINEAR AL, V26, P673
  • [2] Barrett W, 2004, ELECTRON J LINEAR AL, V11, P258
  • [3] The inertia set of the join of graphs
    Barrett, Wayne
    Hall, H. Tracy
    van der Holst, Hein
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 434 (10) : 2197 - 2203
  • [4] Barrett W, 2010, ELECTRON J LINEAR AL, V20, P53
  • [5] The inverse inertia problem for graphs: Cut vertices, trees, and a counterexample
    Barrett, Wayne
    Hall, H. Tracy
    Loewy, Raphael
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (08) : 1147 - 1191
  • [6] Eric A, 2013, ARS MATH CONTEMP, V6, P279
  • [7] Fallat S., 2011, ARXIV E PRINTS
  • [8] The minimum rank of symmetric matrices described by a graph: A survey
    Fallat, Shaun M.
    Hogben, Leslie
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 426 (2-3) : 558 - 582
  • [9] Fiedler M., 1974, Linear Algebra and Its Applications, V9, P119, DOI 10.1016/0024-3795(74)90031-7
  • [10] The implicit construction of multiplicity lists for classes of trees and verification of some conjectures
    Johnson, Charles R.
    Nuckols, Jonathan
    Spicer, Calum
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (05) : 1990 - 2003