Compartment models of the diffusion MR signal in brain white matter: A taxonomy and comparison

被引:314
作者
Panagiotaki, Eleftheria [1 ]
Schneider, Torben [2 ]
Siow, Bernard [1 ,3 ]
Hall, Matt G. [1 ]
Lythgoe, Mark F. [3 ]
Alexander, Daniel C. [1 ]
机构
[1] UCL, Ctr Med Image Comp, Dept Comp Sci, London WC1E 6BT, England
[2] UCL, UCL Inst Neurol, NMR Res Unit, Dept Neuroinflammat, London WC1N 3BG, England
[3] UCL, Ctr Adv Biomed Imaging, London WC1E 6BT, England
基金
英国工程与自然科学研究理事会;
关键词
Diffusion MRI; Compartment models; Axon diameter; White matter; Microstructure imaging; AXON DIAMETER DISTRIBUTION; WATER DIFFUSION; SPIN-ECHO; NMR; PARAMETERS; FRAMEWORK; DENSITY; DESIGN;
D O I
10.1016/j.neuroimage.2011.09.081
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
This paper aims to identify the minimum requirements for an accurate model of the diffusion MR signal in white matter of the brain. We construct a taxonomy of multi-compartment models of white matter from combinations of simple models for the intra- and the extra-axonal spaces. We devise a new diffusion MRI protocol that provides measurements with a wide range of imaging parameters for diffusion sensitization both parallel and perpendicular to white matter fibres. We use the protocol to acquire data from two fixed rat brains, which allows us to fit, study and compare the different models. The study examines a total of 47 analytic models, including several well-used models from the literature, which we place within the taxonomy. The results show that models that incorporate intra-axonal restriction, such as ball and stick or CHARMED, generally explain the data better than those that do not, such as the DT or the biexponential models. However, three-compartment models which account for restriction parallel to the axons and incorporate pore size explain the measurements most accurately. The best fit comes from combining a full diffusion tensor (DT) model of the extra-axonal space with a cylindrical intra-axonal component of single radius and a third spherical compartment of non-zero radius. We also measure the stability of the non-zero radius intra-axonal models and find that single radius intra-axonal models are more stable than gamma distributed radii models with similar fitting performance. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:2241 / 2254
页数:14
相关论文
共 52 条
[1]   FIBER COMPOSITION OF THE HUMAN CORPUS-CALLOSUM [J].
ABOITIZ, F ;
SCHEIBEL, AB ;
FISHER, RS ;
ZAIDEL, E .
BRAIN RESEARCH, 1992, 598 (1-2) :143-153
[2]   A general framework for experiment design in diffusion MRI and its application in measuring direct tissue-microstructure features [J].
Alexander, Daniel C. .
MAGNETIC RESONANCE IN MEDICINE, 2008, 60 (02) :439-448
[3]   Orientationally invariant indices of axon diameter and density from diffusion MRI [J].
Alexander, Daniel C. ;
Hubbard, Penny L. ;
Hall, Matt G. ;
Moore, Elizabeth A. ;
Ptito, Maurice ;
Parker, Geoff J. M. ;
Dyrby, Tim B. .
NEUROIMAGE, 2010, 52 (04) :1374-1389
[4]  
Alexander DC, 2009, MATH VIS, P3, DOI 10.1007/978-3-540-88378-4_1
[5]   Optimal imaging parameters for fiber-orientation estimation in diffusion MRI [J].
Alexander, DC ;
Barker, GJ .
NEUROIMAGE, 2005, 27 (02) :357-367
[6]  
[Anonymous], 2006, P INT SOC MAG RESON, DOI DOI 10.54294/FGFRTV
[7]   Composite hindered and restricted model of diffusion (CHARMED) MR imaging of the human brain [J].
Assaf, Y ;
Basser, PJ .
NEUROIMAGE, 2005, 27 (01) :48-58
[8]   New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter [J].
Assaf, Y ;
Freidlin, RZ ;
Rohde, GK ;
Basser, PJ .
MAGNETIC RESONANCE IN MEDICINE, 2004, 52 (05) :965-978
[9]   AxCaliber: A method for measuring axon diameter distribution from diffusion MRI [J].
Assaf, Yaniv ;
Blumenfeld-Katzir, Tamar ;
Yovel, Yossi ;
Basser, Peter J. .
MAGNETIC RESONANCE IN MEDICINE, 2008, 59 (06) :1347-1354
[10]   In vivo measurement of axon diameter distribution in the corpus callosum of rat brain [J].
Barazany, Daniel ;
Basser, Peter J. ;
Assaf, Yaniv .
BRAIN, 2009, 132 :1210-1220