Synthesis, microstructure and properties of MoAlB ceramics prepared by in situ reactive spark plasma sintering

被引:57
作者
Su, Xiaojia [1 ]
Dong, Jian [1 ]
Chu, Longsheng [1 ]
Sun, Hongliang [1 ]
Grasso, Salvatore [1 ]
Hu, Chunfeng [1 ]
机构
[1] Southwest Jiaotong Univ, Sch Mat Sci & Engn, Key Lab Adv Technol Mat, Minist Educ, Chengdu 610031, Peoples R China
关键词
MoAlB; In situ synthesis; Spark plasma sintering; Microstructure; Properties; HIGH TEMPERATURE CERAMICS; MECHANICAL-PROPERTIES; THERMAL-EXPANSION; OXIDATION RESISTANCE; CRYSTAL-STRUCTURE; COMPOSITES; HARDNESS; MICROHARDNESS; COEFFICIENT; TOUGHNESS;
D O I
10.1016/j.ceramint.2020.03.059
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The renewed research interest on MoAlB ceramic is motivated by its high temperature strength and high temperature oxidation resistance. Bulks were obtained by a reactive spark plasma sintering starting from elemental powders of Mo, Al, and B. Chemical reactions were characterized at intermediate temperatures to define reaction mechanism. The results showed that MoAlB resulted from the reaction of Al8Mo3, MoB, and B or Al8Mo3, Mo, and B at 1000 degrees C. A dense bulk MoAlB ceramic, with a density of 6.26 g/cm(3) (relative density of 97.1%, MoB impurity of 2.0 vol.%), was consolidated at 1200 degrees C for 10 min in vacuum. Microstructure, physical and mechanical properties were also reported. The average grain size was 14.5 mu m in length and 6.9 mu m in width. The measured thermal expansion coefficient and thermal conductivity were 10.1 x 10(-6) K-1 and 37.56 W.m(-1).K-1, respectively, and the electrical conductivity was determined as 2.70 x 10(6) S/m at room temperature. The flexural strength, fracture toughness, and compressive strength were 465.8 MPa, 5.45 MPa.m(1/)(2), and 1467.6 MPa, respectively. Vickers hardness decreased from 13.95 to 9.79 GPa with the increasing load in the range of 10-300 N at ambient temperature. Most significantly, the high temperature hardness could be retained up to 700 degrees C without any degradation, exhibiting excellent high temperature stiffness.
引用
收藏
页码:15214 / 15221
页数:8
相关论文
共 52 条
[1]   Ternary Borides Cr2AlB2, Cr3AlB4, and Cr4AlB6: The First Members of the Series (CrB2)nCrAl with n=1, 2, 3 and a Unifying Concept for Ternary Borides as MAB-Phases [J].
Ade, Martin ;
Hillebrecht, Harald .
INORGANIC CHEMISTRY, 2015, 54 (13) :6122-6135
[2]   Topochemical Deintercalation of Al from MoAIB: Stepwise Etching Pathway, Layered Intergrowth Structures, and Two-Dimensional MBene [J].
Alameda, Lucas T. ;
Moradifar, Parivash ;
Metzger, Zachary P. ;
Alem, Nasim ;
Schaak, Raymond E. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (28) :8833-8840
[3]   General methodology to estimate the dislocation density from microhardness measurements [J].
Ameri, Ali A. H. ;
Elewa, Nancy N. ;
Ashraf, Mahmud ;
Escobedo-Diaz, Juan P. .
MATERIALS CHARACTERIZATION, 2017, 131 :324-330
[4]   Carbon fiber reinforced ultra-high temperature ceramic matrix composites: A review [J].
Arai, Yutaro ;
Inoue, Ryo ;
Goto, Ken ;
Kogo, Yasuo .
CERAMICS INTERNATIONAL, 2019, 45 (12) :14481-14489
[5]   Effects of carbon additives on the properties of ZrB2-based composites: A review [J].
Asl, Mehdi Shahedi ;
Nayebi, Behzad ;
Ahmadi, Zohre ;
Zamharir, Mehran Jaberi ;
Shokouhimehr, Mohammadreza .
CERAMICS INTERNATIONAL, 2018, 44 (07) :7334-7348
[6]   High-temperature mechanical properties and thermal shock behavior of ternary-layered MAB phases Fe2AlB2 [J].
Bai, Yuelei ;
Sun, Dongdong ;
Li, Ning ;
Kong, Fanyu ;
Qi, Xinxin ;
He, Xiaodong ;
Wang, Rongguo ;
Zheng, Yongting .
INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2019, 80 :151-160
[7]   Damage tolerance of nanolayer grained ceramics and quantitative estimation [J].
Bao, YW ;
Hu, CF ;
Zhou, YC .
MATERIALS SCIENCE AND TECHNOLOGY, 2006, 22 (02) :227-230
[8]   Elastic and Mechanical Properties of the MAX Phases [J].
Barsoum, Michel W. ;
Radovic, Miladin .
ANNUAL REVIEW OF MATERIALS RESEARCH, VOL 41, 2011, 41 :195-227
[9]   The MN+1AXN phases:: A new class of solids;: Thermodynamically stable nanolaminates [J].
Barsoum, MW .
PROGRESS IN SOLID STATE CHEMISTRY, 2000, 28 (1-4) :201-281
[10]   Thermal properties of Ti4AlN3 [J].
Barsoum, MW ;
Rawn, CJ ;
El-Raghy, T ;
Procopio, AT ;
Porter, WD ;
Wang, H ;
Hubbard, CR .
JOURNAL OF APPLIED PHYSICS, 2000, 87 (12) :8407-8414