Molybdenum-fluorine-doped SnO2 nanoparticles based on 3D interconnected carbon structure as matrix as high-performance lithium-ion anode material

被引:1
作者
Gao, JiongJian [1 ]
Huang, Rong [1 ]
Yang, Dongping [1 ]
Wu, Kaidan [1 ]
Xiong, Deping [1 ]
Feng, Zuyong [1 ]
He, Miao [1 ]
Feng, Yefeng [2 ]
机构
[1] Guangdong Univ Technol, Sch Phys & Optoelect Engn, Guangzhou 510006, Peoples R China
[2] Sun Yat Sen Univ, Sch Chem Engn & Technol, Zhuhai 519082, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion battery; Anode; NaCl; 3D interconnected carbon network; SnO2; HIGH-CAPACITY; BINDER-FREE; GRAPHENE; STORAGE; COMPOSITE; ELECTRODES; CONVERSION; CATHODES; SHEETS; GROWTH;
D O I
10.1007/s11581-022-04717-x
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The preparation of nanostructured anode materials which can adapt to lithiation strain with higher structural stability and specific capacity is the primary challenge for the development of lithium-ion batteries (LIBs). Herein, we developed a carbon-coated, fluorine-molybdenum-doped SnO2 (SnO2@C-MoF4) green composite with high long-term cycling stability and specific capacity. The composite materials were prepared by the NaCl template method. The carbonaceous composites prepared by the NaCl template method will form a three-dimensional (3D) interconnected carbon structure, which can well alleviate the problem of the large volume change of SnO2 during the lithium intercalation/delithiation process. Thereby, under the premise of maintaining a higher specific capacity, it can improve the long-term cycling stability of tin-based lithium-ion battery anode materials to meet the requirements of high-performance lithium-ion battery anode materials. The SnO2@C-MoF4 composites prepared by the template method have an outstanding specific capacity (845.10 mAh/g) at 0.2 A/g, and superior cycling stability (749.19 mAh/g) was obtained after 800 charge-discharge cycles at 1.0 A/g.
引用
收藏
页码:4587 / 4597
页数:11
相关论文
共 47 条
[1]   Pseudocapacitive oxide materials for high-rate electrochemical energy storage [J].
Augustyn, Veronica ;
Simon, Patrice ;
Dunn, Bruce .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (05) :1597-1614
[2]   Hydrothermal Synthesis of SnO2 Embedded MoO3-x Nanocomposites and Their Synergistic Effects on Lithium Storage [J].
Cao, Daxian ;
Wang, Hongkang ;
Li, Beibei ;
Li, Chao ;
Xie, Sanmu ;
Rogach, Andrey L. ;
Niu, Chunming .
ELECTROCHIMICA ACTA, 2016, 216 :79-87
[3]   Pseudocapacitive Na-Ion Storage Boosts High Rate and Areal Capacity of Self-Branched 2D Layered Metal Chalcogenide Nanoarrays [J].
Chao, Dongliang ;
Liang, Pei ;
Chen, Zhen ;
Bai, Linyi ;
Shen, He ;
Liu, Xiaoxu ;
Xia, Xinhui ;
Zhao, Yanli ;
Savilov, Serguei V. ;
Lin, Jianyi ;
Shen, Ze Xiang .
ACS NANO, 2016, 10 (11) :10211-10219
[4]   Constructing an interface synergistic effect from a SnS/MoS2 heterojunction decorating N, S co-doped carbon nanosheets with enhanced sodium ion storage performance [J].
Cui, Lisan ;
Tan, Chunlei ;
Yang, Guanhua ;
Li, Yu ;
Pan, Qichang ;
Zhang, Man ;
Chen, Zilu ;
Zheng, Fenghua ;
Wang, Hongqiang ;
Li, Qingyu .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (43) :22593-22600
[5]   Superior stability and high capacity of restacked molybdenum disulfide as anode material for lithium ion batteries [J].
Du, Guodong ;
Guo, Zaiping ;
Wang, Shiquan ;
Zeng, Rong ;
Chen, Zhixin ;
Liu, Huakun .
CHEMICAL COMMUNICATIONS, 2010, 46 (07) :1106-1108
[6]   Synthesis of ternary SnO2-MoO3-C composite with nanosheet structure as high-capacity, high-rate and long-lifetime anode for lithium-ion batteries [J].
Feng, Yefeng ;
Wu, Kaidan ;
Ke, Jin ;
Guo, Zhiling ;
Deng, Xiaoqian ;
Bai, Chen ;
Sun, Yukun ;
Wang, Qiao ;
Yang, Bingwen ;
Dong, Huafeng ;
Xiong, Deping ;
He, Miao .
CERAMICS INTERNATIONAL, 2021, 47 (07) :9303-9309
[7]   Fluorine-doped porous SnO2@C nanosheets as a high performance anode material for lithium ion batteries [J].
Feng, Yefeng ;
Bai, Chen ;
Wu, Kaidan ;
Dong, Huafeng ;
Ke, Jin ;
Huang, Xiping ;
Xiong, Deping ;
He, Miao .
JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 843
[8]   Mo-Doped SnO2 Nanoparticles Embedded in Ultrathin Graphite Nanosheets as a High-Reversible-Capacity, Superior-Rate, and Long-Cycle-Life Anode Material for Lithium-Ion Batteries [J].
Feng, Yefeng ;
Wu, Kaidan ;
Sun, Yukun ;
Guo, Zhiling ;
Ke, Jin ;
Huang, Xiping ;
Bai, Chen ;
Dong, Huafeng ;
Xiong, Deping ;
He, Miao .
LANGMUIR, 2020, 36 (31) :9276-9283
[9]   Challenges for Rechargeable Li Batteries [J].
Goodenough, John B. ;
Kim, Youngsik .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :587-603
[10]   Hierarchical synthesis of Mo-Sn oxide cage-bell hybrid structures with superior lithium storage [J].
Guo, Hong ;
Liu, Lixiang ;
Li, Tingting ;
Chen, Weiwei ;
Wang, Yapeng ;
Wang, Wei .
CHEMICAL COMMUNICATIONS, 2014, 50 (06) :673-675