Effect of ballast-resistor and field-screening on electron-emission from nanodiamond emitters fabricated on micropatterned silicon pillar arrays

被引:1
作者
Ghosh, N. [1 ]
Kang, W. P. [1 ]
Davidson, J. L. [1 ]
Raina, S. [2 ]
机构
[1] Vanderbilt Univ, Dept Elect Engn, Nashville, TN 37235 USA
[2] Vanderbilt Univ, Interdisciplinary Program Mat Sci, Nashville, TN 37235 USA
来源
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B | 2012年 / 30卷 / 01期
关键词
THERMAL-CONDUCTIVITY; CVD DIAMOND; FILMS;
D O I
10.1116/1.3674284
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper describes the influence of ballast-resistor and field-screening on the electron field-emission behavior of nanodiamond emitter arrays fabricated on micropatterned silicon pillars. Arrays of 50 x 50 silicon pillars capped with nanodiamond with different ballast resistances and pillar separations have been fabricated on different silicon substrates as cathode for field emission testing. The goal of this study is to evaluate the fabrication method and electron emission characteristics in this configuration for field emission applications. The electron field emission results have been compared to observe the effect of the ballast resistive behavior and array spacing of micropatterned silicon pillars on the nanodiamond field emission behaviors. (C) 2012 American Vacuum Society. [DOI: 10.1116/1.3674284]
引用
收藏
页数:5
相关论文
共 23 条
  • [1] Reduction of work function on a W(100) field emitter due to co-adsorption of Si and Ti
    Adachi, H
    Ashihara, K
    Saito, Y
    Nakane, H
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1998, 16 (02): : 875 - 879
  • [2] Etching submicrometer trenches by using the Bosch process and its application to the fabrication of antireflection structures
    Chang, CL
    Wang, YF
    Kanamori, Y
    Shih, JJ
    Kawai, Y
    Lee, CK
    Wu, KC
    Esashi, M
    [J]. JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2005, 15 (03) : 580 - 585
  • [3] Screening effects on field emission from arrays of (5,5) carbon nanotubes: Quantum mechanical simulations
    Chen, Guihua
    Wang, Weiliang
    Peng, Jie
    He, Chunshan
    Deng, Shaozhi
    Xu, Ningsheng
    Li, Zhibing
    [J]. PHYSICAL REVIEW B, 2007, 76 (19)
  • [4] Thermal conductivity measurement of CVD diamond films using a modified thermal comparator method
    Cheruparambil, KR
    Farouk, B
    Yehoda, JE
    Macken, NA
    [J]. JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2000, 122 (04): : 808 - 816
  • [5] Diamond Vacuum Electronic Device Behavior After High Neutron Fluence Exposure
    Davidson, Jimmy L.
    Kang, Weng Poo
    Subramanian, Karthik
    Holmes-Siedle, Andrew G.
    Reed, Robert A.
    Galloway, Kenneth F.
    [J]. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2009, 56 (04) : 2225 - 2229
  • [6] Electron emission in intense electric fields
    Fowler, RH
    Nordheim, L
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-CONTAINING PAPERS OF A MATHEMATICAL AND PHYSICAL CHARACTER, 1928, 119 (781) : 173 - 181
  • [7] Enhanced electron-field emission from nanodiamond ridge-structured emission arrays capped on micropatterned silicon pillars
    Ghosh, N.
    Kang, W. P.
    Davidson, J. L.
    Raina, S.
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2010, 28 (05): : 1016 - 1019
  • [8] Huang J. C. M., 1997, U.S. Patent No. 5,633,560, Patent No. 5633560
  • [9] Kane R. C., 1992, U.S. Patent No. 5,142,184, Patent No. 5142184
  • [10] Nanodiamond lateral VFEM technology for harsh environments
    Kang, W. P.
    Davidson, J. L.
    Subramanian, K.
    Choi, B. K.
    Galloway, K. F.
    [J]. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2007, 54 (04) : 1061 - 1065