Topological entanglement entropy in Chern-Simons theories and quantum Hall fluids

被引:164
作者
Dong, Shiying [1 ]
Fradkin, Eduardo [1 ]
Leigh, Robert G. [1 ]
Nowling, Sean [1 ,2 ,3 ]
机构
[1] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA
[2] Univ Helsinki, Dept Math & Stat, FIN-00014 Helsinki, Finland
[3] Univ Helsinki, Helsinki Inst Phys, FIN-00014 Helsinki, Finland
基金
美国国家科学基金会;
关键词
topological field theories; Chern-Simons theories;
D O I
10.1088/1126-6708/2008/05/016
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We compute directly the entanglement entropy of spatial regions in Chern-Simons gauge theories in 2 + 1 dimensions using surgery. We consider the possible dependence of the entanglement entropy on the topology of the spatial manifold and on the vacuum state on that manifold. The entanglement entropy of puncture insertions (quasi-particles) is discussed in detail for a few cases of interest. We show that quite generally the topological entanglement entropy is determined by the modular S-matrix of the associated rational conformal field theory as well as by the fusion rules and fusion coefficients. We use these results to determine the universal topological piece of the entanglement entropy for Abelian and non-Abelian quantum Hall fluids. As a byproduct we present the calculation of the modular S-matrix of two coset RCFTs of interest.
引用
收藏
页数:47
相关论文
共 78 条
[1]   UNIVERSAL NONINTEGER GROUND-STATE DEGENERACY IN CRITICAL QUANTUM-SYSTEMS [J].
AFFLECK, I ;
LUDWIG, AWW .
PHYSICAL REVIEW LETTERS, 1991, 67 (02) :161-164
[2]   Wavefunctions for topological quantum registers [J].
Ardonne, E. ;
Schoutens, K. .
ANNALS OF PHYSICS, 2007, 322 (01) :201-235
[3]  
ARDONNE E, 2002, THESIS U AMSTERDAM A
[4]   Non-abelian statistics in the interference noise of the Moore-Read quantum Hall state [J].
Ardonne, Eddy ;
Kim, Eun-Ah .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2008,
[5]   FRACTIONAL STATISTICS AND THE QUANTUM HALL-EFFECT [J].
AROVAS, D ;
SCHRIEFFER, JR ;
WILCZEK, F .
PHYSICAL REVIEW LETTERS, 1984, 53 (07) :722-723
[6]   QUANTUM SYMMETRIES IN DISCRETE GAUGE-THEORIES [J].
BAIS, FA ;
VANDRIEL, P ;
PROPITIUS, MD .
PHYSICS LETTERS B, 1992, 280 (1-2) :63-70
[7]   BLACK-HOLE IN 3-DIMENSIONAL SPACETIME [J].
BANADOS, M ;
TEITELBOIM, C ;
ZANELLI, J .
PHYSICAL REVIEW LETTERS, 1992, 69 (13) :1849-1851
[8]   Detecting non-Abelian statistics in the ν=5/2 fractional quantum Hall state -: art. no. 016803 [J].
Bonderson, P ;
Kitaev, A ;
Shtengel, K .
PHYSICAL REVIEW LETTERS, 2006, 96 (01)
[9]   Entanglement entropy and quantum field theory [J].
Calabrese, P ;
Cardy, J .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,
[10]   ON GEOMETRIC ENTROPY [J].
CALLAN, C ;
WILCZEK, F .
PHYSICS LETTERS B, 1994, 333 (1-2) :55-61