Polynomial Time Interactive Proofs for Linear Algebra with Exponential Matrix Dimensions and Scalars Given by Polynomial Time Circuits

被引:4
作者
Dumas, Jean-Guillaume [1 ]
Kaltofen, Erich L. [2 ]
Villard, Gilles [3 ]
Zhi, Lihong [4 ]
机构
[1] Univ Grenoble Alpes, CNRS, LJK, Grenoble, France
[2] NCSU, Dept Math, Raleigh, NC USA
[3] Univ Lyon, INRIA, CNRS, ENSL,UCBL,LIP, Lyon, France
[4] UCAS, AMSS, KLMM, Beijing, Peoples R China
来源
PROCEEDINGS OF THE 2017 ACM INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION (ISSAC'17) | 2017年
基金
美国国家科学基金会;
关键词
RANK;
D O I
10.1145/3087604.3087640
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present an interactive probabilistic proof protocol that certifies in (log N)(O(1)) arithmetic and Boolean operations for the verifier the determinant, for example, of an N x N matrix over a field whose entries a(i, j) are given by a single (log N)(O(1))-depth arithmetic circuit, which contains (log N)(O(1)) field constants and which is polynomial time uniform, for example, which has size (log N)(O(1)). The prover can produce the interactive certificate within a (log N)(O(1)) factor of the cost of computing the determinant. Our protocol is a version of the proofs for muggles protocol by Goldwasser, Kalai and Rothblum [STOC 2008, J. ACM 2015]. An application is the following: suppose in a system of k homogeneous polynomials of total degree <= d in the k variables y(1),..., y(k) the coefficient of the term y(1)(e1)... y(k)(ek) in the i-th polynomial is the (hypergeometric) value ((i+ e(1) + .... + e(k))!)/((i!))(e(1)!) ... (e(k)!)), where e! is the factorial of e. Then we have a probabilistic protocol that certifies (projective) solvability or inconsistency of such a system in (k log(d))(O(1)) bit complexity for the verifier, that is, in polynomial time in the number of variables k and the logarithm of the total degree, log(d).
引用
收藏
页码:125 / 132
页数:8
相关论文
共 25 条
[1]  
[Anonymous], 1992, Optimization Methods and Software, DOI DOI 10.1080/10556789208805505
[2]   LOG DEPTH CIRCUITS FOR DIVISION AND RELATED PROBLEMS [J].
BEAME, PW ;
COOK, SA ;
HOOVER, HJ .
SIAM JOURNAL ON COMPUTING, 1986, 15 (04) :994-1003
[3]   A REGULAR LAYOUT FOR PARALLEL ADDERS [J].
BRENT, RP ;
KUNG, HT .
IEEE TRANSACTIONS ON COMPUTERS, 1982, 31 (03) :260-264
[4]   GENERALIZED CHARACTERISTIC-POLYNOMIALS [J].
CANNY, J .
JOURNAL OF SYMBOLIC COMPUTATION, 1990, 9 (03) :241-250
[5]  
Canny J. F., 1989, Proceedings of the ACM-SIGSAM 1989 International Symposium on Symbolic and Algebraic Computation, ISSAC '89, P121, DOI 10.1145/74540.74556
[6]  
CHISTOV AL, 1985, LECT NOTES COMPUT SC, V199, P63
[7]  
Chtcherba Arthur D., 2006, P 2006 INT S SYMB AL, P55, DOI [10.1145/1145768.1145784, DOI 10.1145/1145768.1145784]
[8]  
Csanky L., 1976, SIAM Journal on Computing, V5, P618, DOI 10.1137/0205040
[9]   Macaulay style formulas for sparse resultants [J].
D'Andrea, C .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 354 (07) :2595-2629
[10]   Linear Time Interactive Certificates for the Minimal Polynomial and the Determinant of a Sparse Matrix [J].
Dumas, Jean -Guillaume ;
Kaltofen, Erich ;
Thome, Emmanuel ;
Villard, Gilles .
PROCEEDINGS OF THE 2016 ACM INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION (ISSAC 2016), 2016, :199-206