ENDOGENEITY IN SEMIPARAMETRIC THRESHOLD REGRESSION

被引:8
作者
Kourtellos, Andros [1 ]
Stengos, Thanasis [2 ]
Sun, Yiguo [2 ]
机构
[1] Univ Cyprus, Nicosia, Cyprus
[2] Univ Guelph, Guelph, ON, Canada
基金
欧盟地平线“2020”;
关键词
LEAST-SQUARES ESTIMATOR; ASYMPTOTIC NORMALITY; INFERENCE;
D O I
10.1017/S0266466621000256
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper estimates threshold regression models with an endogenous threshold variable using a nonparametric control function approach. Assuming diminishing threshold effects, we derive the consistency and limiting distribution of our proposed estimator constructed from the series approximation method for weakly dependent data. In addition, we propose a test for the endogeneity of the threshold variable, which is valid regardless of whether the threshold effects exist. We assess the performance of our methods using Monte Carlo simulations.
引用
收藏
页码:562 / 595
页数:34
相关论文
共 37 条
[1]   ASYMPTOTIC NORMALITY OF SERIES ESTIMATORS FOR NONPARAMETRIC AND SEMIPARAMETRIC REGRESSION-MODELS [J].
ANDREWS, DWK .
ECONOMETRICA, 1991, 59 (02) :307-345
[2]   Semi-nonparametric IV estimation of shape-invariant Engel curves [J].
Blundell, Richard ;
Chen, Xiaohong ;
Kristensen, Dennis .
ECONOMETRICA, 2007, 75 (06) :1613-1669
[3]   Instrumental variable estimation of a threshold model [J].
Caner, M ;
Hansen, BE .
ECONOMETRIC THEORY, 2004, 20 (05) :813-843
[4]   Threshold autoregression with a unit root [J].
Caner, M ;
Hansen, BE .
ECONOMETRICA, 2001, 69 (06) :1555-1596
[6]  
Chen XH, 2007, HBK ECON, V2, P5549, DOI 10.1016/S1573-4412(07)06076-X
[7]   Dealing With Endogeneity in Threshold Models Using Copulas [J].
Christopoulos, Dimitris ;
McAdam, Peter ;
Tzavalis, Elias .
JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2021, 39 (01) :166-178
[8]   Smooth coefficient models with endogenous environmental variables [J].
Delgado, Michael S. ;
Ozabaci, Deniz ;
Sun, Yiguo ;
Kumbhakar, Subal C. .
ECONOMETRIC REVIEWS, 2020, 39 (02) :158-180
[9]  
Durlauf S. N., 1996, Journal of Economic growth, V1, P75, DOI DOI 10.1007/BF00163343)
[10]  
Dzyadyk VK, 2008, THEORY OF UNIFORM APPROXIMATION OF FUNCTIONS BY POLYNOMIALS