Optimal Approximate Solutions of Fixed Point Equations

被引:11
作者
Basha, S. Sadiq [2 ]
Shahzad, N. [1 ]
Jeyaraj, R. [3 ]
机构
[1] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
[2] Anna Univ, Dept Math, Madras 600025, Tamil Nadu, India
[3] St Josephs Coll Higher Secondary Sch, Dept Math, Tiruchirappalli 620002, India
关键词
QUASI-ASYMPTOTIC CONTRACTIONS; PROXIMITY POINTS; EQUILIBRIUM PAIRS; CONVERGENCE; EXTENSIONS; THEOREMS; MULTIFUNCTIONS; EXISTENCE;
D O I
10.1155/2011/174560
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main objective of this paper is to present some best proximity point theorems for K-cyclic mappings and C-cyclic mappings in the frameworks of metric spaces and uniformly convex Banach spaces, thereby furnishing an optimal approximate solution to the equations of the form Tx = x where T is a non-self mapping.
引用
收藏
页数:9
相关论文
共 24 条
[1]   Convergence and existence results for best proximity points [J].
Al-Thagafi, M. A. ;
Shahzad, Naseer .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (10) :3665-3671
[2]   Best Proximity Sets and Equilibrium Pairs for a Finite Family of Multimaps [J].
Al-Thagafi, M. A. ;
Shahzad, Naseer .
FIXED POINT THEORY AND APPLICATIONS, 2008, 2008 (1)
[3]   Best proximity pairs and equilibrium pairs for Kakutani multimaps [J].
Al-Thagafi, M. A. ;
Shahzad, Naseer .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (03) :1209-1216
[4]  
Basha S.S., 1977, Acta Sci. Math. (Szeged), V63, P289
[5]   Extensions of Banach's Contraction Principle [J].
Basha, S. Sadiq .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2010, 31 (05) :569-576
[6]  
Basha SS, 2000, J APPROX THEORY, V103, P119
[7]  
Basha SS, 2001, INDIAN J PURE AP MAT, V32, P1237
[8]   Best proximity points for cyclic Meir-Keeler contractions [J].
Di Bari, Cristina ;
Suzuki, Tomonari ;
Vetro, Calogero .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (11) :3790-3794
[9]   Existence and convergence of best proximity points [J].
Eldred, A. Anthony ;
Veeramani, P. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 323 (02) :1001-1006
[10]   Proximal normal structure and relatively nonexpansive mappings [J].
Eldred, AA ;
Kirk, WA ;
Veeramani, P .
STUDIA MATHEMATICA, 2005, 171 (03) :283-293